相關(guān)習題
 0  208672  208680  208686  208690  208696  208698  208702  208708  208710  208716  208722  208726  208728  208732  208738  208740  208746  208750  208752  208756  208758  208762  208764  208766  208767  208768  208770  208771  208772  208774  208776  208780  208782  208786  208788  208792  208798  208800  208806  208810  208812  208816  208822  208828  208830  208836  208840  208842  208848  208852  208858  208866  266669 

科目: 來源: 題型:

有A,B兩個盒子,A盒中裝有3個紅球,2個黑球,B盒中裝有2個紅球,3個黑球,現(xiàn)從A,B兩個盒子中各取2個球互換,假定取到每個球是等可能的.
(Ⅰ)求B盒中紅球個數(shù)不變的概率;
(Ⅱ)互換2球后,B盒中紅球的個數(shù)記為ξ,寫出ξ的分布列,并求出ξ的期望E(ξ).

查看答案和解析>>

科目: 來源: 題型:

用圖象法判斷方程解的個數(shù):
(1)
x
=x-1;
(2)x3=x2-3.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=|2x-a|+|x-1|.
(1)當a=3時,求不等式f(x)≥2的解集;
(2)若?x∈R,f(x)≥|x-1|-x+5,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點,且滿足
F1M
F2M
=0.
(Ⅰ)求離心率的取值范圍;
(Ⅱ)當離心率e取得最小值時,橢圓上的點到焦點的最近距離為4(
2
-1).
①求此時橢圓G的方程;
②設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關(guān)于過點P(0,-
3
3
)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,長方體ABCD-A1B1C1D1的底面是正方形,AB=1,AA1=2,線段B1D1上有兩個點E,F(xiàn).
(1)證明:AC⊥B1D1
(2)證明:EF∥平面ABCD;
(3)若E,F(xiàn)是線段B1D1上的點,且EF=
1
2
,求三棱錐A-BEF的體積.

查看答案和解析>>

科目: 來源: 題型:

國內(nèi)跨省市之間郵寄信函,每封信函的質(zhì)量和對應(yīng)的郵資如下表:
信函質(zhì)量(m)/g0<m≤2020<m≤4040<m≤6060<M≤8080<m≤100
郵資(M)/元1.202.403.604.806.00
畫出圖象,并寫出函數(shù)的解析式.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)φ(x)=3x(x∈R).
(1)若y=kx(k>0)與函數(shù)y=φ(x)的圖象交于A,B兩點,過點B作x軸的平行線交函數(shù)y=φ(3x)的圖象于點C,若AC平行于y軸,求點A的縱坐標;
(2)令p(x)=
φ(x)
φ(x)+
3
,q(x)=
3
φ(2x)+3
,求證:p(
1
2014
)+p(
2
2014
)+…+p(
2013
2014
)=q(
1
2014
)+q(
2
2014
)+…+q(
2013
2014
).
(3)若f(x)=
φ(x+1)+a
φ(x)+b
為R的奇函數(shù).
  (i)求函數(shù)f(x)的表達式;
  (ii)若對任意的x∈R,都有f(φ(2x)-1)+f(2-kφ(x))>0恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

解關(guān)于x的不等式:|x+1|-|x-2|≥x+1.

查看答案和解析>>

科目: 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,D是BC的中點,AA1=AB=1.
(Ⅰ)求證:A1C∥平面AB1D;
(Ⅱ)求二面角B-AB1-D的正切值;
(Ⅲ)求點C到平面AB1D的距離.

查看答案和解析>>

科目: 來源: 題型:

設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x,(x∈R)的一個極值點.
(Ⅰ)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)a>0,g(x)=(a2+
25
4
)ex,若存在ξ1,ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<
25
4
成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案