相關(guān)習(xí)題
 0  224701  224709  224715  224719  224725  224727  224731  224737  224739  224745  224751  224755  224757  224761  224767  224769  224775  224779  224781  224785  224787  224791  224793  224795  224796  224797  224799  224800  224801  224803  224805  224809  224811  224815  224817  224821  224827  224829  224835  224839  224841  224845  224851  224857  224859  224865  224869  224871  224877  224881  224887  224895  266669 

科目: 來源: 題型:解答題

13.如圖,在正方體ABCD-A′B′C′D′中,求向量$\overrightarrow{AC}$分別與向量$\overrightarrow{A′B′}$,$\overrightarrow{B′A′}$,$\overrightarrow{AD′}$,$\overrightarrow{CD′}$,$\overrightarrow{B′D′}$的夾角.

查看答案和解析>>

科目: 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=|$\frac{x}{1+x}$|,當(dāng)f(x)的定義域為(m,+∞)時,值域恰為[0,1),則實數(shù)m的取值范圍是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-a|+|x|.
(Ⅰ)若a=1,解不等式f(x)>2;
(Ⅱ)若存在x∈R,使得不等式f(x)$≤\frac{{t}^{2}+3}{t+1}$對任意t>-1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,BC是圓O的直徑,過C作圓O的切線AC,連接AB交圓O于點D.
(Ⅰ)若AC=3,圓O的半徑為1,求AD;
(Ⅱ)連接DO并延長交圓O于點E,連接CE,求證:CD2=AD•CE.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知f(x)=$\frac{a+ln(2x+1)}{2x+1}$.
(Ⅰ)若曲線f(x)在x=0處的切線與直線x-2y-2016=0垂直,求y=f(x)的極值;
(Ⅱ)若關(guān)于t的方程(2x+1)2f′(x)=t3-12t在x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$時恒有3個不同的實數(shù)根,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.《中國夢想秀》是浙江衛(wèi)士推出的一檔“真人秀”綜藝節(jié)目,節(jié)目開播至今,有上百組的追夢人在這個舞臺上實現(xiàn)了自己的夢想,某機構(gòu)隨機抽取100名參與節(jié)目的選手,以他們的年齡作為樣本進(jìn)行分析研究,并根據(jù)所得數(shù)據(jù)作出如下頻數(shù)分布表:
 選手年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 頻數(shù) 6 22 32 24 10 6
(Ⅰ)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)已知樣本中年齡在[55,65]內(nèi)的6位選手中,有4名女選手,2名男選手,現(xiàn)從中選3人進(jìn)行回訪,記選出的女選手的人數(shù)為X,求X的分布列、數(shù)學(xué)期望與方差.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知定點A(3,0),動點M滿足|$\overrightarrow{MA}$|=2|$\overrightarrow{MO}$|,那么落在圓C:(x-1)2+(y-1)2=1上的點M連成的直線方程為2x-y-2=0.

查看答案和解析>>

科目: 來源: 題型:填空題

6.(1+2x+3x2)(x+$\frac{1}{x}$)5的展開式中x的系數(shù)為40.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.x2cosxB.sinx2C.xsinxD.x2-$\frac{1}{6}$x4

查看答案和解析>>

科目: 來源: 題型:選擇題

4.如圖,平行四邊形ABCD中,AB=2AD=2,∠BAD=60°,E為DC的中點,那么$\overrightarrow{AC}$與$\overrightarrow{EB}$所成角的余弦值為( 。
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

查看答案和解析>>

同步練習(xí)冊答案