相關(guān)習(xí)題
 0  225532  225540  225546  225550  225556  225558  225562  225568  225570  225576  225582  225586  225588  225592  225598  225600  225606  225610  225612  225616  225618  225622  225624  225626  225627  225628  225630  225631  225632  225634  225636  225640  225642  225646  225648  225652  225658  225660  225666  225670  225672  225676  225682  225688  225690  225696  225700  225702  225708  225712  225718  225726  266669 

科目: 來(lái)源: 題型:填空題

13.函數(shù)y=lg(x+2)(x>-2),當(dāng)y<0時(shí),x的取值范圍是(-2,-1).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.(1)已知θ是第二象限角,試判斷tan(sinθ)•cot(cosθ)的符號(hào);
(2)若sin(cosθ)•cos(sinθ)<0,則θ為第幾象限角?

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.若向量$\overrightarrow{m}$=(-1,4)與$\overrightarrow{n}$=(2,t)的夾角為鈍角,則函數(shù)f(t)=t2-2t+1的值域是( 。
A.($\frac{1}{4}$,81)∪(81,+∞)B.($\frac{1}{4}$,+∞)C.[0,81)∪(81,+∞)D.[0,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.正數(shù)數(shù)列{an}中,a1=3,an+1=ban+1(b是常數(shù),n=1,2,3,…),且a1-1,a2+1,a3-1成等差數(shù)列.
(1)求b的值;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知f(x)=eax($\frac{a}{x}$+a+1),(a≥-1)
(1)求f(x)的單調(diào)區(qū)間;
(2)若存在x1>0,x2<0,使f(x1)<f(x2),求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.三條直線l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能構(gòu)成三角形,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{2}$),$\overrightarrow$=(cosx,-1),當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),2cos2x-sin2x的值為( 。
A.$\frac{19}{13}$B.$\frac{20}{13}$C.$\frac{21}{13}$D.$\frac{22}{13}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.設(shè)函數(shù)φ(x)=ax2+bx+1(a,b∈R)
(1)若φ(-1)=0,且對(duì)任意實(shí)數(shù)x均有φ(x)≥0成立,求實(shí)數(shù)a,b的值;
(2)在(1)的條件下,令f(x)=φ(x)-4x,若g(x)與f(x)在(1,+∞)上有相同的單調(diào)性,1<x1<x2,x3=mx1+(1-m)x2,x4=(1-m)x1+mx2且x3>1,x4>1,試比較:|g(x3)-g(x4)|與|g(x1)-g(x2)|的大。

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2sinθ+$\sqrt{3}$xcosθ,其中θ∈R為參數(shù),那么f′(1)的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.定義在全體正實(shí)數(shù)上的函數(shù)f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知函數(shù)y=f′(x)的圖象如圖所示lnb≥ln2a且f(2a+b)≥1,則$\frac{3b+6}{2a+4}$的取值范圍是( 。
A.[1,+∞]B.[2,+∞]C.[$\frac{3}{4}$,2]D.[0,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案