相關(guān)習(xí)題
 0  225576  225584  225590  225594  225600  225602  225606  225612  225614  225620  225626  225630  225632  225636  225642  225644  225650  225654  225656  225660  225662  225666  225668  225670  225671  225672  225674  225675  225676  225678  225680  225684  225686  225690  225692  225696  225702  225704  225710  225714  225716  225720  225726  225732  225734  225740  225744  225746  225752  225756  225762  225770  266669 

科目: 來源: 題型:選擇題

13.已知a>0且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{(2-a)x+3a-4,x≤0}\\{{a}^{x},x>0}\end{array}\right.$滿足對任意實數(shù)x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0成立,則a的取值范圍是( 。
A.(1,2)B.[$\frac{5}{3}$,2)C.(1,$\frac{5}{3}$)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=m-|2x+1|-|2x-3|,若?x0∈R,不等式f(x0)≥0成立,
(1)求實數(shù)m的取值范圍;
(2)若x+2y-m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)y=f(x)的定義域是R,函數(shù)g(x)=f(x+5)+f(1-x),若方程g(x)=0有且僅有7個不同的實數(shù)解,則這7個實數(shù)解之和為-14.

查看答案和解析>>

科目: 來源: 題型:填空題

10.雙曲線關(guān)于兩坐標(biāo)對稱,且與圓x2+y2=10相交于點(diǎn)P(3,-1),若此圓過點(diǎn)P的切線與雙曲線的一條漸近線平行,此雙曲線的方程為$\frac{9{x}^{2}}{80}-\frac{{y}^{2}}{80}=1$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.下列函數(shù)中,在區(qū)間(0,1]上是增函數(shù)且最大值為-1的為( 。
A.y=-x2B.$y={(\frac{1}{2})^x}$C.$y=-\frac{1}{x}$D.y=2x

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知直線l過拋物線E:y2=2px(p>0)的焦點(diǎn)F且與x垂直,l與E所圍成的封閉圖形的面積為24,若點(diǎn)P為拋物線E上任意一點(diǎn),A(4,1),則|PA|+|PF|的最小值為( 。
A.6B.4+2$\sqrt{2}$C.7D.4+2$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若以F1(-3,0),F(xiàn)2(3,0)為焦點(diǎn)的雙曲線與直線y=x-1有公共點(diǎn),則該雙曲線的離心率的最小值為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.據(jù)我國西部各。▍^(qū)、市)2013年人均地區(qū)生產(chǎn)總值(單位:千元)繪制的頻率分布直方圖如圖所示,則人均地區(qū)生產(chǎn)總值在區(qū)間[28,38)上的頻率是( 。
A.0.3B.0.4C.0.5D.0.7

查看答案和解析>>

科目: 來源: 題型:選擇題

5.設(shè)U=R,集合A={x∈R|$\frac{x-1}{x-2}>0$},B={x∈R|0<x<2},則(∁UA)∩B=( 。
A.(1,2]B.[1,2)C.(1,2)D.[1,2]

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項和為Sn,若S2=16,且a1,a2-4,a3-8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n}$($\frac{{a}_{n}-2}{2n}$)n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案