相關(guān)習(xí)題
 0  225950  225958  225964  225968  225974  225976  225980  225986  225988  225994  226000  226004  226006  226010  226016  226018  226024  226028  226030  226034  226036  226040  226042  226044  226045  226046  226048  226049  226050  226052  226054  226058  226060  226064  226066  226070  226076  226078  226084  226088  226090  226094  226100  226106  226108  226114  226118  226120  226126  226130  226136  226144  266669 

科目: 來源: 題型:填空題

10.在x軸上與點A(4,-1,7),B(-3,5,-2)等距離的點的坐標(biāo)為(2,0,0).

查看答案和解析>>

科目: 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<π),以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{p}{1-cosθ}$(p>0).
(Ⅰ)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.若B=2A,a=1,b=$\frac{\sqrt{6}+\sqrt{2}}{2}$,則c=1.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)f(x)=1n(e-2+|x|)-$\frac{5}{1+{x}^{2}}$,若f(x-1)<0,則x的取值范圍是(-1,3).

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知命題p:?m∈R,使得函數(shù)f(x)=x3+(m-1)x2-2是奇函數(shù),命題q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),則“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$∥$\overrightarrow$”的充要條件,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosφ}\\{y=1+4sinφ}\end{array}\right.$φ為參數(shù)),直線l的極坐標(biāo)方程為$\sqrt{3}$ρcosθ+ρsinθ=-5,θ∈[0,2π].
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)求曲線C截直線l所得的弦長.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知直線l:y=x+b,圓C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)當(dāng)a=1時,直線l與圓C相切,求b的值;
(2)當(dāng)b=4時,求直線l被圓C所截得弦長的最大值;
(3)當(dāng)b=1時,是否存在a,使得直線l與圓C相交于A,B兩點,且滿足x1x2+y1y2=1?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.拋物線的頂點在原點,焦點在x軸上,其通徑的兩端與頂點連成的三角形的面積為4.則此拋物線的方程是( 。
A.y2=8$\sqrt{2}$xB.y2=±4$\sqrt{2}$xC.y2=±4xD.y2=±8$\sqrt{2}$x

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,且對任意的n∈N,有an+Sn=n,設(shè)bn=an-1,求證:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目: 來源: 題型:填空題

1.函數(shù)f(x)=$\frac{\sqrt{1-{x}^{2}}-1}{x-2}$的取值范圍為[0,1].

查看答案和解析>>

同步練習(xí)冊答案