相關習題
 0  226169  226177  226183  226187  226193  226195  226199  226205  226207  226213  226219  226223  226225  226229  226235  226237  226243  226247  226249  226253  226255  226259  226261  226263  226264  226265  226267  226268  226269  226271  226273  226277  226279  226283  226285  226289  226295  226297  226303  226307  226309  226313  226319  226325  226327  226333  226337  226339  226345  226349  226355  226363  266669 

科目: 來源: 題型:解答題

10.已知a、b、m均為正數(shù),且a<b,求證:$\frac{a+m}{b+m}$>$\frac{a}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點,
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于3?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到A1點,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點C到平面A1BD的距離.

查看答案和解析>>

科目: 來源: 題型:填空題

7.在棱長為2的正方體ABCD-A1B1C1D1中,點P是正方體棱上的一點(不包括棱的端點),滿足|PB|+|PD1|=$2\sqrt{5}$的點P的個數(shù)為12;若滿足|PB|+|PD1|=m的點P的個數(shù)為6,則m的取值范圍是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)求D到平面PBC的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E、F,且EF=1,則下列結(jié)論中錯誤的是( 。
A.EF∥平面ABCDB.AC⊥BE
C.三棱錐A-BEF體積為定值D.△BEF與△AEF面積相等

查看答案和解析>>

科目: 來源: 題型:選擇題

4.如圖,在四面體ABCD中,AB⊥BD,CD⊥DB,若AB與CD所成的角的大小為60°,則二面角C-BD-A的大小為( 。
A.60°或90°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,圓O為△ABC的外接圓,D為$\widehat{AC}$的中點,BD交AC于E.
(Ⅰ)證明:AD2=DE•DB;
(Ⅱ)若AD∥BC,DE=2EB,AD=$\sqrt{6}$,求圓O的半徑.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=$\frac{π}{3}$,AB=1,CD=3,M為PC上一點,MC=2PM.
(Ⅰ)證明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求點D到平面PBC的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知三棱錐O-ABC的頂點A,B,C都在半徑為2的球面上,O是球心,∠AOB=60°,當△AOC和△BOC的面積之和最大時,則O到面ABC的距離為(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{7}$D.$\frac{{2\sqrt{21}}}{7}$

查看答案和解析>>

同步練習冊答案