相關(guān)習(xí)題
 0  226544  226552  226558  226562  226568  226570  226574  226580  226582  226588  226594  226598  226600  226604  226610  226612  226618  226622  226624  226628  226630  226634  226636  226638  226639  226640  226642  226643  226644  226646  226648  226652  226654  226658  226660  226664  226670  226672  226678  226682  226684  226688  226694  226700  226702  226708  226712  226714  226720  226724  226730  226738  266669 

科目: 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}+x-1(x<0)}\\{-\frac{1}{3}{x}^{3}+2x(x≥0)}\end{array}\right.$有下列說法:
①f(x)在[2,+∞)上是減函數(shù);
②f(x)的最大值是2;
③方程f(x)=0有2個(gè)實(shí)數(shù)根;
④f(x)≤$\frac{4\sqrt{2}}{3}$在R上恒成立,
正確的說法是①③④.(寫出所有正確說法的序號).

查看答案和解析>>

科目: 來源: 題型:選擇題

7.函數(shù)y=ln(mx2+4mx+4)的值域?yàn)镽,則m的取值范圍是( 。
A.m<0或m≥1B.m≥1C.m>1D.以上答案都不對

查看答案和解析>>

科目: 來源: 題型:解答題

6.某人的一串鑰匙有n把鑰匙,其中只有一把能打開自己的家門,當(dāng)他隨意地試用這串鑰匙時(shí),求:打開門時(shí)已被試用過的鑰匙數(shù)的數(shù)學(xué)期望與方差,假定.
(1)把每次試用過的鑰匙分開;
(2)把每次試用過的鑰匙再混雜在這串鑰匙中.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,AC⊥面BCD,BD⊥CD,設(shè)∠ABC=θ1,∠CBD=θ2,∠ABD=θ3,求證:cosθ3=cosθ1cosθ2

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,F(xiàn)是PD的中點(diǎn),若$PA=AD=3,CD=\sqrt{6}$
(1)求證:AF⊥平面PCD;
(2)求直線AC與平面PCD所成角的余弦值的大。

查看答案和解析>>

科目: 來源: 題型:填空題

3.如圖所示,O是正三角形ABC的中心,四邊形AOBE和AOCD均為平行四邊形,則與向量$\overrightarrow{AD}$相等的向量有$\overrightarrow{OC}$;與向量$\overrightarrow{OA}$共線的向量有$\overrightarrow{DC}$和$\overrightarrow{EB}$;與向量$\overrightarrow{OA}$的模相等的向量有$\overrightarrow{OB}$、$\overrightarrow{OC}$、$\overrightarrow{AE}$、$\overrightarrow{AD}$、$\overrightarrow{DC}$和$\overrightarrow{EB}$(填圖中所畫的向量)

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=-2sin(2x+φ)(-π<φ<0)的圖象關(guān)于直線x=$\frac{π}{8}$對稱.
(1)求此函數(shù)的最小正周期;
(2)求f(x)的最大值和此時(shí)相應(yīng)的x的值;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖所示,△ABC和△A′B′C′是在各邊的$\frac{1}{3}$處相交的兩個(gè)全等的正三角形,設(shè)△ABC的邊長為a,圖中列出了長度均為$\frac{a}{3}$的若干個(gè)向量,求:
(1)與$\overrightarrow{GH}$相等的向量;
(2)與$\overrightarrow{GH}$共線的向量;
(3)與$\overrightarrow{EA}$平行的向量.

查看答案和解析>>

科目: 來源: 題型:解答題

20.y求下列函數(shù)的單調(diào)區(qū)間:y=2-cosx.

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)二次函數(shù)f(x)=2ax2-2$\sqrt{2}$x+$\frac{1}{2}$c(x∈R)的值域?yàn)閇0,+∞),則$\frac{1}{c+2}$+$\frac{2}{a+2}$的取值范圍是($\frac{9}{5}$,$\frac{23}{10}$).

查看答案和解析>>

同步練習(xí)冊答案