相關(guān)習(xí)題
 0  230446  230454  230460  230464  230470  230472  230476  230482  230484  230490  230496  230500  230502  230506  230512  230514  230520  230524  230526  230530  230532  230536  230538  230540  230541  230542  230544  230545  230546  230548  230550  230554  230556  230560  230562  230566  230572  230574  230580  230584  230586  230590  230596  230602  230604  230610  230614  230616  230622  230626  230632  230640  266669 

科目: 來源: 題型:解答題

14.隨著我國經(jīng)濟的迅速發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號x12345
儲蓄存款y (千億元)567810
(Ⅰ)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)今年的人民幣儲蓄存款.
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.某市利用歷史資料算得煤氣年消耗量y(單位:萬立方米)與使用煤氣戶數(shù)x(單位:萬戶)之間的回歸直線方程為:$\widehaty$=$\frac{170}{23}$x-$\frac{31}{23}$.若市政府下一步再擴大2300煤氣用戶,試?yán)没貧w直線方程估計該市年煤氣消耗量將增加0.35萬立方米.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.為了解學(xué)生的數(shù)學(xué)成績與物理成績的關(guān)系,在一次考試中隨機抽取5名學(xué)生的數(shù)學(xué)、物理成績?nèi)绫硭,則y對x的線性回歸方程為( 。
學(xué)生A1A2A3A4A5
數(shù)學(xué)成績x(分)8991939597
物理成績y(分)8789899293
A.$\widehaty$=x+2B.$\widehaty$=x-2C.$\widehaty$=0.75x+20.25D.$\widehaty$=1.25x-20.25

查看答案和解析>>

科目: 來源: 題型:解答題

11.在某種產(chǎn)品表面進行腐蝕性試驗,得到腐蝕深度y與腐蝕時間x之間對應(yīng)的一組數(shù)據(jù):
時間x(s)23456
深度y(μm)2.23.85.56.57.0
(1)在所給的坐標(biāo)系中畫出散點圖;
(2)如果y對x有線性相關(guān)關(guān)系,請用最小二乘法求y關(guān)于x的回歸直線方程;
(3)估計x=12時,腐蝕深度約是多少?
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$$,\hat a$=$\overline y$-$\hat b\overline x$.
參考數(shù)據(jù):22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在[2,+∞) 上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若函數(shù)f(x)=$\frac{2x}{{x}^{2}+4}$在區(qū)間(a,2a+1)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.(-1,$\frac{1}{2}$]B.[-2,$\frac{1}{2}$]C.[-1,0]D.[-1,$\frac{1}{2}$]

查看答案和解析>>

科目: 來源: 題型:解答題

7.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)由以上數(shù)據(jù)經(jīng)計算得:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{1}{2}$,求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目: 來源: 題型:解答題

6.給出最小二乘法下的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$系數(shù)公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元),有如表的統(tǒng)計資料:
使用年限x (年)23456
維修費用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計使用年限為12年時,維修費用是多少?

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知x與y之間的幾組數(shù)據(jù)如表:
x123456
y021334
假設(shè)根據(jù)如表數(shù)據(jù)所得線性回歸直線l的方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則l一定經(jīng)過的點為( 。
A.(1,0)B.(2,2)C.($\frac{7}{2}$,$\frac{13}{6}$)D.(3,1)

查看答案和解析>>

同步練習(xí)冊答案