相關(guān)習題
 0  236776  236784  236790  236794  236800  236802  236806  236812  236814  236820  236826  236830  236832  236836  236842  236844  236850  236854  236856  236860  236862  236866  236868  236870  236871  236872  236874  236875  236876  236878  236880  236884  236886  236890  236892  236896  236902  236904  236910  236914  236916  236920  236926  236932  236934  236940  236944  236946  236952  236956  236962  236970  266669 

科目: 來源: 題型:填空題

18.將函數(shù)y=cosx的圖象向右移$\frac{π}{3}$個單位,可以得到y(tǒng)=sin(x+$\frac{π}{6}$)的圖象.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知冪函數(shù)f(x)的圖象經(jīng)過點(3,$\frac{1}{9}$),則f(4)=$\frac{1}{16}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為( 。
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)y=logax,y=ax,y=x+a在同一坐標系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知點M(5,-6)和向量$\overrightarrow{a}$=(1,-2),若$\overrightarrow{NM}$=3$\overrightarrow{a}$,則點N的坐標為(  )
A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)

查看答案和解析>>

科目: 來源: 題型:填空題

13.在空間直角坐標系中,點A(1,3,-2),B(-2,3,2),則A,B兩點間的距離為5.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.命題:“?x0∈R,$x_0^2-1>0$”的否定為(  )
A.?x∈R,$x_{\;}^2-1≤0$B.?x∈R,$x_{\;}^2-1≤0$C.?x∈R,$x_{\;}^2-1<0$D.?x∈R,$x_{\;}^2-1<0$

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式$\frac{x+a-2}{x-a}≤0$的解集為N,若x∈N是x∈M的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.

查看答案和解析>>

科目: 來源: 題型:解答題

9.某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表.
表1:(乙流水線樣本頻數(shù)分布表) 
產(chǎn)品重量(克)頻數(shù)
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(Ⅰ)若以頻率作為概率,試估計從甲流水線上任取5件產(chǎn)品,求其中合格品的件數(shù)X的數(shù)學期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx-2的分布列;(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面$\frac{π}{2}$列聯(lián)表,并回答有多大的把握認為“產(chǎn)品的包裝質(zhì)量與兩條資動包裝流水線的選擇有關(guān)”.
甲流水線乙流水線合計
合格品a=b=
不合格品c=d=
合 計n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的臨界值表供參考:
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案