相關(guān)習題
 0  245351  245359  245365  245369  245375  245377  245381  245387  245389  245395  245401  245405  245407  245411  245417  245419  245425  245429  245431  245435  245437  245441  245443  245445  245446  245447  245449  245450  245451  245453  245455  245459  245461  245465  245467  245471  245477  245479  245485  245489  245491  245495  245501  245507  245509  245515  245519  245521  245527  245531  245537  245545  266669 

科目: 來源: 題型:選擇題

11.命題p:?x∈R,ex-mx=0,命題q:f(x)=$\frac{1}{3}$x3-mx2-2x在[-1,1]遞減,若p∨(-q)為假命題,則實數(shù)m的取值范圍為(  )
A.[-3,e)B.[-3,0]C.[0,$\frac{1}{2}$]D.[0,e)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知點A是拋物線x2=4y的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且滿足|PA|=m|PB|,當m取最大值時,點P恰好在以A,B為焦點的雙曲線上,則雙曲線的離心率為(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$-1

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD為梯形,∠ABC=∠BAD=90°,BC=2$\sqrt{2}$,AP=AD=AB=$\sqrt{2}$,∠PAB=∠PAD=α.
(1)試在棱PA上確定一個點E,使得PC∥平面BDE,并求出此時$\frac{AE}{EP}$的值;
(2)當α=60°時,求證:CD⊥平面PBD.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知集合A={x|-1<x<1},B={x|x2-x-2<0}則圖中陰影部分所表示的集合為(  )
A.(-1,0]B.[-1,2)C.[1,2)D.(1,2]

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知復數(shù)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則z•$\overline{z}$=( 。
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知P(m,n)是函授f(x)=ex-1圖象上任一于點
(Ⅰ)若點P關(guān)于直線y=x-1的對稱點為Q(x,y),求Q點坐標滿足的函數(shù)關(guān)系式
(Ⅱ)已知點M(x0,y0)到直線l:Ax+By+C=0的距離d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,當點M在函數(shù)y=h(x)圖象上時,公式變?yōu)?\frac{|A{x}_{0}+Bh({x}_{0})+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,請參考該公式求出函數(shù)ω(s,t)=|s-ex-1-1|+|t-ln(t-1)|,(s∈R,t>0)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,若△ABC不是直角三角形,則下列命題正確的是①②④⑤(寫出所有正確命題的編號)
①tanA•tanB•tanC=tanA+tanB+tanC;
②若tanA:tanB:tanC=1:2:3,則A=45°;
③tanA+tanB+tanC的最小值為3$\sqrt{3}$;
④當$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$時,則sin2C≥sinA•sinB;
⑤若[x]表示不超過x的最大整數(shù),則滿足tanA+tanB+tanC≤[tanA]+[tanB]+[tanC]的A,B,C僅有一組.

查看答案和解析>>

科目: 來源: 題型:解答題

4.平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|2$\overrightarrow{a}$-$\overrightarrow$|=1,|$\overrightarrow{a}$-2$\overrightarrow$|=1,則$\overrightarrow{a}$$•\overrightarrow$的取值范圍[$-\frac{1}{9}$,1].

查看答案和解析>>

科目: 來源: 題型:選擇題

3.單位正方體(棱長為1)被切去一部分,剩下部分幾何體的三視圖如圖所示,則( 。
A.該幾何體體積為$\frac{5}{6}$B.該幾何體體積可能為$\frac{2}{3}$
C.該幾何體表面積應(yīng)為$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$D.該幾何體唯一

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知f(x)=(x2+x+1)n(n∈N*),g(x)是關(guān)于x的2n次多項式;
(1)若f(x2)g(x)=g(x3)恒成立,求g(1)和g(-1)的值;并寫出一個滿足條件的g(x)的表達式,無需證明.
(2)求證:對于任意給定的正整數(shù)n,都存在與x無關(guān)的常數(shù)a0,a1,a2,…,an,使得f(x)=a0(1+x2n)+a1(x+x2n-1)+a2(x2+x2n-2)+…+an-1(xn-1+xn+1)+anxn

查看答案和解析>>

同步練習冊答案