相關(guān)習(xí)題
 0  245594  245602  245608  245612  245618  245620  245624  245630  245632  245638  245644  245648  245650  245654  245660  245662  245668  245672  245674  245678  245680  245684  245686  245688  245689  245690  245692  245693  245694  245696  245698  245702  245704  245708  245710  245714  245720  245722  245728  245732  245734  245738  245744  245750  245752  245758  245762  245764  245770  245774  245780  245788  266669 

科目: 來源: 題型:解答題

11.設(shè)a,b,c為互不相等的正整數(shù),求證:1+$\frac{1}{2}$+$\frac{1}{3}$≤a+$\frac{{2}^{2}}$+$\frac{c}{{3}^{2}}$.(用柯西不等式證明)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知x、y∈R+,且x+y=4,求$\frac{1}{x}$+$\frac{3}{y}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.某校在寒假放假之前舉行主題為“珍惜生命,安全出行”的“交通與安全”知識(shí)宣傳與競賽活動(dòng),為了了解本次活動(dòng)舉辦的效果,從全校學(xué)生的答卷中抽取了部分學(xué)生的答卷成績(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),…,[90,100]的數(shù)據(jù)):

(Ⅰ)求n,x,y的值,并根據(jù)頻率分布的直觀圖估計(jì)這次競賽的平均成績;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場參加市團(tuán)委舉辦的宣傳演講活動(dòng),求所抽取的2名同學(xué)來自不同組的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知不等式 $1+\frac{1}{4}<\frac{3}{2},1+\frac{1}{4}+\frac{1}{9}<\frac{5}{3},1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}<\frac{7}{4},…$,照此規(guī)律,總結(jié)出第 n(n∈N*)個(gè)不等式為1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在△ABC中,AB=2BC,以A,B為焦點(diǎn),經(jīng)過C的橢圓和雙曲線的離心率分別為e1,e2,則( 。
A.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=1B.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2C.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=1D.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=2

查看答案和解析>>

科目: 來源: 題型:解答題

6.求函數(shù)y=2sinx-3cosx的周期和最值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P($\sqrt{3}$,y0)在該雙曲線上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則雙曲線的漸近線方程為( 。
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目: 來源: 題型:解答題

4.過原點(diǎn)作兩條不同的直線l1和l2分別與圓x2+y2-2x=0相交于兩點(diǎn)A,B,
(1)若直線l1和l2的斜率分別為k和$\frac{1}{k}$(k>0),求證:|OA|2+|OB|2為定值;
(2)若|OA|•|OB|=λ(λ為正常數(shù)),試問:不論A,B兩點(diǎn)的位置如何變化,直線AB總能與一個(gè)定圓相切嗎?若能,求出次定圓方程,若不能,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=a,點(diǎn)A1在底面ABC上的射影恰為AC的中點(diǎn)D,A1D∩AC1=M,BA1⊥AC1
(Ⅰ)試問在線段AB是否存在一點(diǎn)N,使得MN∥平面BB1C1C,若存在,指出N點(diǎn)位置,并證明你的結(jié)論;若不存在,說明理由;
(Ⅱ)求證:四邊形A1C1CA是菱形,并求AC1長.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)P在橢圓上,直線AP交y軸于點(diǎn)M,若$\overrightarrow{PF}$=$\sqrt{3}\overrightarrow{MO}$(O為坐標(biāo)原點(diǎn)),則橢圓的離心率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}-1$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案