相關(guān)習(xí)題
 0  245771  245779  245785  245789  245795  245797  245801  245807  245809  245815  245821  245825  245827  245831  245837  245839  245845  245849  245851  245855  245857  245861  245863  245865  245866  245867  245869  245870  245871  245873  245875  245879  245881  245885  245887  245891  245897  245899  245905  245909  245911  245915  245921  245927  245929  245935  245939  245941  245947  245951  245957  245965  266669 

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2+x,x∈R,若a、b、c∈R,且a+b>0,b+c>0,c+a>0,則f(a)+f(b)+f(c)的值的符號(hào)為(  )
A.B.負(fù)C.D.不確定

查看答案和解析>>

科目: 來源: 題型:選擇題

15.化簡(jiǎn)以下各式:
①$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}$;
②$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$;
③$\overrightarrow{FQ}+\overrightarrow{QP}+\overrightarrow{EF}$-$\overrightarrow{EP}$
④$\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{AB}$
其結(jié)果是為零向量的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知CD是△ABC的邊AB上的高,點(diǎn)E、F、G分別是AD、AC、BD的中點(diǎn),且CD=DB=2,AE=$\sqrt{2}$現(xiàn)沿EF和CD把△AEF和△BCD折起,使A、B兩點(diǎn)重合與點(diǎn)P
(Ⅰ)求證:EG∥平面PFC
(Ⅱ)求平面PEC與平面PFC所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=-2$\sqrt{3}$cos2(x+$\frac{π}{4}$)+2sin(x+$\frac{π}{4}$)sin(x+$\frac{π}{4}$)+$\sqrt{3}$
(1)當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時(shí)求f(x)值域;
(2)若θ∈($\frac{π}{12}$,$\frac{π}{3}$),f(θ)=$\frac{2}{3}$,求cos(2θ+$\frac{π}{12}$)的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(x+1),g(x)=$\frac{ax}{x+1}$.
(1)若a=e,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且AB=AC=1,AD=$\sqrt{2}$.
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)設(shè)直線AC與平面PBC所成角為α,當(dāng)α在$(0,\frac{π}{6})$內(nèi)變化時(shí),求二面角P-BC-A的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,在三棱錐D-ABC中,AB=BC=CD=1,AC=$\sqrt{3}$,平面ACD⊥平面ABC,∠BCD=90°.
(Ⅰ)求證:CD⊥平面ABC;
(Ⅱ)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若實(shí)數(shù)x、y滿足x|x|-y|y|=1,則點(diǎn)(x,y)到直線y=x的距離的取值范圍是( 。
A.[1,$\sqrt{2}$)B.(0,$\sqrt{2}$]C.($\frac{1}{2}$,1)D.(0,1]

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖所示,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線AB:y=$\frac{1}{2}$x+1相切于點(diǎn)A.
(1)求a,b滿足的關(guān)系式,并用a,b表示點(diǎn)A的坐標(biāo);
(2)設(shè)F是橢圓的右焦點(diǎn),若△AFB是以F為直角頂點(diǎn)的等腰直角三角形,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)為(0,2),離心率為$\sqrt{3}$
(1)求雙曲線C的方程;
(2)若直線l:y=kx-$\sqrt{2}$與雙曲線恒有兩個(gè)不同的交點(diǎn)A和B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>-2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案