相關(guān)習(xí)題
 0  251205  251213  251219  251223  251229  251231  251235  251241  251243  251249  251255  251259  251261  251265  251271  251273  251279  251283  251285  251289  251291  251295  251297  251299  251300  251301  251303  251304  251305  251307  251309  251313  251315  251319  251321  251325  251331  251333  251339  251343  251345  251349  251355  251361  251363  251369  251373  251375  251381  251385  251391  251399  266669 

科目: 來源: 題型:選擇題

20.甲船在湖中B島的正南A處,AB=3km,甲船以8km/h的速度向正北方向航行,同時乙船自B島出發(fā),以12km/h的速度向北偏東60°方向駛?cè),則行駛15分鐘時,兩船的距離是( 。
A.$\sqrt{7}\;km$B.$\sqrt{13}\;km$C.$\sqrt{19}\;km$D.$\sqrt{10-3\sqrt{3}}\;km$

查看答案和解析>>

科目: 來源: 題型:填空題

19.雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1上一點P到它的一個焦點的距離為12,則點P到另一個焦點的距離為2或22.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.圓心在拋物線y2=2x(y>0)上,并且與拋物線的準線及x軸都相切的方程是( 。
A.x2+y2-x-2y-$\frac{1}{4}$=0,B.x2+y2+x-2y+1=0,
C.x2+y2-x+1=0,D.x2+y2-x-2y+$\frac{1}{4}$=0,

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖是某幾何體的三視圖,
(1)你能想象出它的幾何結(jié)構(gòu)并畫出它的直觀圖嗎?
(2)根據(jù)三視圖的有關(guān)數(shù)據(jù)(單位:mm),計算這個幾何體的表面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知某幾何體的俯視圖是如圖所示的邊長為1的正方形,主視圖與左視圖是邊長為1的正三角形,則其全面積是( 。
A.2B.3C.$1+\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.各棱長都為2的四棱錐,底面ABCD是正方形,將側(cè)面PBC水平放置,則這個幾何體的俯視圖的面積為( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,海岸線上有相距5海里的兩座燈塔A、B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西75°方向,與A相距3$\sqrt{2}$海里的D處;乙船位于燈塔B的北偏西60°方向,與B相距5海里的C處,則兩艘輪船之間的距離多少海里?

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\sqrt{2}$x,且過點$({-\sqrt{2},\sqrt{2}})$.
(1)求雙曲線C的標準方程;
(2)斜率為k且過點P(1,2)的直線l與雙曲線C有兩個公共點,求k的取值范圍;
(3)在(2)的條件下,試判斷以Q(1,1)為中點的弦是否存在?若存在,求出其所在直線的方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦點分別為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過定點$P(1,\frac{{\sqrt{2}}}{2})$
(1)求橢圓C的方程;
(2)設(shè)直線y=$\frac{{\sqrt{2}}}{2}$(x+1)交橢圓C于A,B兩點,求線段AB的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點分別為F1、F2,以F1F2為邊作正△MF1F2,若雙曲線恰好平分該三角形的另兩邊,則雙曲線的離心率為(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+1C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案