相關(guān)習題
 0  251442  251450  251456  251460  251466  251468  251472  251478  251480  251486  251492  251496  251498  251502  251508  251510  251516  251520  251522  251526  251528  251532  251534  251536  251537  251538  251540  251541  251542  251544  251546  251550  251552  251556  251558  251562  251568  251570  251576  251580  251582  251586  251592  251598  251600  251606  251610  251612  251618  251622  251628  251636  266669 

科目: 來源: 題型:填空題

15.如圖△ABC中,D是AB的一個三等分點,DE∥BC,EF∥DC,AF=2,則AB=$\frac{9}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖所示,a∥b∥c,直線AB與a、b、c分別相交于A、E、B,直線CD與a、b、c分別相交于C、E、D,AE=EB,則有( 。
A.AE=CEB.BE=DEC.CE=DED.CE>DE

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知動點P在棱長為1的正方體ABCD-A1B1C1D1的表面上運動,且PA=r(0<r<$\sqrt{3}$),記點P的軌跡長度為f(r).給出以下四個命題:
①f(1)=$\frac{3}{2}$π;②f($\sqrt{2}$)=$\sqrt{3}π$;③f($\frac{2\sqrt{3}}{3}$)=$\frac{2\sqrt{3}}{3}$π;
④函數(shù)f(r)在(0,1)上是增函數(shù),f(r)在($\sqrt{2}$,$\sqrt{3}$)上是減函數(shù).其中為真命題的是( 。
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,準備在扇形空地AOB上修建一個山水景觀OPQ,己知∠AOB=$\frac{2}{3}$π,OA=lkm,點P在扇形弧上,PQ∥OA交OB于點Q,記∠POA=x.
(Ⅰ)當Q是OB中點時,求PQ的長;
(Ⅱ)求使山水景觀OPQ的面積S最大時x的值; 
(Ⅲ)為了方便路人休閑行走,要在扇形空地上鋪設(shè)一條從入口A到出口B的觀光道路,道路由弧$\widehat{AP}$,線段PQ以及線段QB組成,怎樣設(shè)計才能使得觀光道路最長?

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知△ABC的三邊長分別為AB=5,BC=4,AC=3,M 是AB邊上的點,P是平面ABC外一點.給出下列四個命題:
①若PA丄平面ABC,則三棱錐P-ABC的四個面都是直角三角形;
②若PM丄平面ABC,且M是AB邊中點,則有PA=PB=PC;
③若PC=5,PC丄平面ABC,則△PCM面積的最小值為$\frac{15}{2}$;
④若PC=5,P在平面ABC上的射影是△ABC內(nèi)切圓的圓心,則點P到平面ABC的距離為$\sqrt{23}$.
其中正確命題的序號是①②④. (把你認為正確命題的序號都填上)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.如圖,設(shè)A是棱長為2的正方體的一個頂點,過從頂點A出發(fā)的三條棱的中點作截面,對正方體的所有頂點都如此操作,截去8個三棱錐,所得的各截面與正方體各面共同圍成一個多面體,則關(guān)于此多面體有以下結(jié)論:
①有24個頂點;②有36條棱;③有14個面;④表面積為12;⑤體積為$\frac{20}{3}$.
正確的有(  )個.
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E、F別是AB、PD的中點.若PA=AD=CD=4.
(Ⅰ)求證:EF⊥AC;
(Ⅱ)求直線FC平面PCE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.存在最小的合數(shù)n,使得2n-1≡1(modn)成立,則n的值為( 。
A.327B.341C.331D.355

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知四棱錐P-ABCD中,底面ABCD為∠ABC=$\frac{2}{3}$π的菱形,PA⊥平面ABCD,點Q在直線PA上.
(1)證明直線QC⊥直線BD;
(2)若二面角B-QC-D的大小為$\frac{2π}{3}$,點M為BC的中點,求直線QM與AB所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在棱長為1的正方體ABCD-A1B1C1D1中,BC與B1D間的距離是( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案