相關(guān)習(xí)題
 0  251616  251624  251630  251634  251640  251642  251646  251652  251654  251660  251666  251670  251672  251676  251682  251684  251690  251694  251696  251700  251702  251706  251708  251710  251711  251712  251714  251715  251716  251718  251720  251724  251726  251730  251732  251736  251742  251744  251750  251754  251756  251760  251766  251772  251774  251780  251784  251786  251792  251796  251802  251810  266669 

科目: 來源: 題型:解答題

18.△ABC中,a,b,c分別是A,B,C所對的邊,S是該三角形的面積,若bcosC=(2a-c)cosB.
(Ⅰ)求∠B的大;
(Ⅱ)若a=4,S=5$\sqrt{3}$,求b的值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.過拋物線y2=12x焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),滿足|AF|=3|FB|,則弦AB的中點(diǎn)到準(zhǔn)線的距離為8.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對邊,設(shè)向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角A的大小是( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目: 來源: 題型:填空題

15.若${(\sqrt{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開式中的第4項(xiàng)為常數(shù)項(xiàng),則展開式的各項(xiàng)系數(shù)的和為$\frac{1}{32}$.

查看答案和解析>>

科目: 來源: 題型:填空題

14.在(0,2π)內(nèi),與$-\frac{7π}{6}$終邊相同的角是$\frac{5π}{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(滿分100分)如下表所示:
序號12345678910
數(shù)學(xué)/分95758094926567849871
物理/分90637287917158829381
序號11121314151617181920
數(shù)學(xué)/分67936478779057837283
物理/分77824885699161847886
若單科成績在85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學(xué)成績優(yōu)秀數(shù)學(xué)成績不優(yōu)秀合計(jì)
物理成績優(yōu)秀5217
物理成績不優(yōu)秀11213
合計(jì)61420
(2)根據(jù)題(1)中表格的數(shù)據(jù)計(jì)算,能否有99%的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù)當(dāng)Χ2≤2.706時(shí),無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)Χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).

查看答案和解析>>

科目: 來源: 題型:填空題

12.在Rt△ABC中,AB⊥AC,則有AB2+AC2=BC2成立.拓展到空間,在直四面體P-ABC中,PA⊥PB、PB⊥PC、PC⊥PA.類比平面幾何的勾股定理,在直四面體P-ABC中可得到相應(yīng)的結(jié)論是$S_{△ABC}^2=S_{△PAB}^2+S_{△PBC}^2+S_{△PCA}^2$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}$≤φ≤$\frac{π}{2})$的圖象關(guān)于直線x=$\frac{π}{3}$對稱,且圖象上最高點(diǎn)到相鄰的函數(shù)零點(diǎn)的水平距離為$\frac{π}{4}$.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{4}(\frac{π}{6}<α<\frac{2π}{3})$,求$sin(α+\frac{π}{2})$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.將函數(shù)y=cosx的圖象向右平移$\frac{π}{2}$個(gè)單位,得到函數(shù)y=f(x)的圖象,則下列說法正確的是( 。
A.y=f(x)是偶函數(shù)B.y=f(x)的周期為π
C.y=f(x)的圖象關(guān)于直線$x=\frac{π}{2}$對稱D.y=f(x)的圖象關(guān)于點(diǎn)$(-\frac{π}{2},0)$對稱

查看答案和解析>>

科目: 來源: 題型:填空題

9.觀察下列等式:
$\frac{3}{1×2}×\frac{1}{2}=1-\frac{1}{2^2}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}=1-\frac{1}{{3×{2^2}}}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+\frac{5}{3×4}×\frac{1}{2^3}=1-\frac{1}{{4×{2^3}}}$,
…,
由以上等式得$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+…+\frac{7}{5×6}×\frac{1}{2^5}$==$1-\frac{1}{{6×{2^5}}}$.

查看答案和解析>>

同步練習(xí)冊答案