相關(guān)習(xí)題
 0  252256  252264  252270  252274  252280  252282  252286  252292  252294  252300  252306  252310  252312  252316  252322  252324  252330  252334  252336  252340  252342  252346  252348  252350  252351  252352  252354  252355  252356  252358  252360  252364  252366  252370  252372  252376  252382  252384  252390  252394  252396  252400  252406  252412  252414  252420  252424  252426  252432  252436  252442  252450  266669 

科目: 來源: 題型:選擇題

18.下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的是( 。
A.(1)(2)B.(1)(4)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目: 來源: 題型:解答題

17.設(shè)f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知a是實數(shù),則函數(shù)f(x)=$\frac{1}{{|{a•{e^x}+1}|}}$-2的圖象不可能是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.曲線y=xlnx在點(1,0)處的切線方程是( 。
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

查看答案和解析>>

科目: 來源: 題型:填空題

14.下列命題中正確的是②③.(寫出所有正確命題的序號)
①存在α滿足sinα+cosα=2;       
②y=cos($\frac{7π}{2}$-3x)是奇函數(shù);
③y=4sin(2x+$\frac{5π}{4}$)的一個對稱中心是(-$\frac{9π}{8}$,0);
④y=sin(2x-$\frac{π}{4}$)的圖象可由y=sin 2x的圖象向右平移$\frac{π}{4}$個單位得到.

查看答案和解析>>

科目: 來源: 題型:解答題

13.證明函數(shù)f(x)=$\frac{2x+1}{x-1}$在(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

12.計算:
(1)$\root{4}{{{{({\sqrt{5}-4})}^4}}}+\root{3}{{{{({\sqrt{5}-4})}^3}}}+{2^{-2}}×{({2\frac{1}{4}})^{-\frac{1}{2}}}-{({0.01})^{0.5}}$
(2)$\frac{{\root{3}{{{a^{\frac{9}{2}}}\sqrt{{a^{-3}}}}}}}{{\sqrt{\root{3}{{{a^{-7}}}}•\root{3}{{{a^{13}}}}}}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若f(x)是奇函數(shù),則g(3)的值是( 。
A.-$\frac{1}{8}$B.-8C.$\frac{1}{8}$D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

10.定義在R上的函數(shù)f(x),對任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則( 。
A.f(3)<f(1)<f(2)B.f(1)<f(2)<f(3)C.f(2)<f(1)<f(3)D.f(3)<f(2)<f(1)

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在四棱錐S-ABCD中,已知底面ABCD為直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,CD=$\sqrt{5}$.
(1)求四棱錐S-ABCD的體積;
(2)在棱SD上找一點E,使CE∥平面SAB,并證明.

查看答案和解析>>

同步練習(xí)冊答案