相關(guān)習(xí)題
 0  252715  252723  252729  252733  252739  252741  252745  252751  252753  252759  252765  252769  252771  252775  252781  252783  252789  252793  252795  252799  252801  252805  252807  252809  252810  252811  252813  252814  252815  252817  252819  252823  252825  252829  252831  252835  252841  252843  252849  252853  252855  252859  252865  252871  252873  252879  252883  252885  252891  252895  252901  252909  266669 

科目: 來源: 題型:選擇題

16.在△ABC中,分別根據(jù)下列條件解三角形,其中兩解的是( 。
A.a=7,b=14,a=30°B.a=17,b=8,a=135°C.a=3,b=4,a=27°D.a=10,b=7,a=60°

查看答案和解析>>

科目: 來源: 題型:選擇題

15.不等式$\frac{x+1}{2-x}$≤0的解集為( 。
A.[-2,1]B.[-1,2]C.[-1,2)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)($\frac{3\sqrt{2}}{2}$,2)在橢圓上.
(I)求橢圓的離心率;
(II)點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn),求證:△PF2Q的周長是定值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對稱.
(1)已知函數(shù)f(x)=$\frac{{{x^2}+mx+m}}{x}$的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的條件下,若對實(shí)數(shù)x<0及t>0,恒有g(shù)(x)<f(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且$\sqrt{3}$a=2csinA
(1)確定角C的大;
(2)若c=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ)(φ>0),(-π<ϕ<0)的一段圖象如圖所示,則ϕ=(  )
A.$-\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$-\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知曲線C上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1($0,-\sqrt{3})$,F(xiàn)2($0,\sqrt{3})$,
(Ⅰ)求曲線C的方程;
(Ⅱ)已知直線$l:y=kx+\sqrt{3}$與曲線C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.橢圓$\frac{x^2}{4}+{y^2}=1$兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn),則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍是[-2,1].

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),若雙曲線右支上存在一點(diǎn)($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)與點(diǎn)F1關(guān)于直線y=-$\frac{bx}{a}$對稱,則該雙曲線的離心率為(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.如圖,空間四邊形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,點(diǎn)M在OA上,且$\overrightarrow{OM}$=$\frac{2}{3}$$\overrightarrow{OA}$,點(diǎn)N為BC中點(diǎn),則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}\vec a-\frac{2}{3}\vec b+\frac{1}{2}\vec c$B.$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$C.$\frac{1}{2}\vec a+\frac{1}{2}\vec b-\frac{1}{2}\vec c$D.$\frac{2}{3}\vec a+\frac{2}{3}\vec b-\frac{1}{2}\vec c$

查看答案和解析>>

同步練習(xí)冊答案