10.已知在四棱錐P-ABCD中,底面ABCD為菱形且∠ADC=120°,E,F(xiàn)分別是AD,PB的中點且PD=AD
(1)求證:EF∥平面PCD;
(2)若∠PDA=60°,求證:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A=PB-C的余弦值.

分析 (1)利用線面平行的判定定理即可證明EF∥平面PCD;
(2)若∠PDA=60°,利用線面垂直的性質(zhì)定理即可證明EF⊥BC;
(3)若PD⊥平面ABCD,建立空間坐標(biāo)系,求出平面的法向量,利用向量法即可求二面角A=PB-C的余弦值.

解答 (1)證明:取PC的中點G,連接FG,
∵E,F(xiàn)分別是AD,PB的中點,
∴FG為△PBC的中位線,
則FG∥BC,F(xiàn)G=$\frac{1}{2}$BC,DE=$\frac{1}{2}$BC,
則DE∥FG,且DE=FG,
則四邊形DFGD為平行四邊形,
則EF∥DG,
∵EF?平面PCD,DG?平面PCD
∴EF∥平面PCD;
(2)若∠PDA=60°,
∵PD=AD,
∴△PAD是等腰三角形,
則PE⊥AD,
∵底面ABCD為菱形且∠ADC=120°,
∴△ABD是等邊三角形,
∴AE⊥BE,
∵PE∩BE=E,
∴AE⊥平面PBE,
∵BC∥AE,
∴BC⊥平面PBE,
∵EF?平面PBE
∴EF⊥BC;
(3)連接AC,BD交于O,連接OF,
則AC⊥BD,OF∥PD
若PD⊥平面ABCD,
則OF⊥平面ABCD,
建立以O(shè)為坐標(biāo)原點,OA,OB,OF為x,y,z軸的空間直角坐標(biāo)系如圖:
設(shè)PD=AD=2,則OB=1,OA=OC=$\sqrt{3}$,OF=1,
則A($\sqrt{3}$,0,0),C(-$\sqrt{3}$,0,0),B(0,1,0),P(0,0,2),
則$\overrightarrow{PB}$=(0,1,-2),$\overrightarrow{AB}$=(-$\sqrt{3}$,1,0),$\overrightarrow{BC}$=(-$\sqrt{3}$,-1,0),
設(shè)$\overrightarrow{m}$=(x,y,z)為面APB的一個法向量,
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=0}\\{\overrightarrow{m}•\overrightarrow{PB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-\sqrt{3}x+y=0}\\{y-2z=0}\end{array}\right.$,
令z=1,則y=2,x=$\frac{2}{\sqrt{3}}$,
則$\overrightarrow{m}$=($\frac{2}{\sqrt{3}}$,2,1),
設(shè)平面PBC的一個法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{y-2z=0}\\{-\sqrt{3}x-y=0}\end{array}\right.$,
令z=1,則y=2,x=-$\frac{2}{\sqrt{3}}$,
即$\overrightarrow{n}$=(-$\frac{2}{\sqrt{3}}$,2,1),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-\frac{2}{\sqrt{3}}×\frac{2}{\sqrt{3}}+2×2+1×1}{\sqrt{(\frac{2}{\sqrt{3}})^{2}+{2}^{2}+{1}^{2}}•\sqrt{(-\frac{2}{\sqrt{3}})^{2}+{2}^{2}+{1}^{2}}}$=$\frac{11}{19}$,
∵二面角A-PB-C是鈍二面角,
則面角A-PB-C的余弦值是-$\frac{11}{19}$.

點評 本題綜合考查空間直線平行和垂直的判斷以及空間角的計算,涉及二面角的平面角,利用向量法是解決空間角常用的方法,考查的知識面較廣,難度中等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價值球員),如表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).
比分易建聯(lián)技術(shù)統(tǒng)計
投籃命中罰球命中全場得分真實得分率
中國91-42新加坡3/76/71259.52%
中國76-73韓國7/136/82060.53%
中國84-67約旦12/202/52658.56%
中國75-62哈薩克期坦5/75/51581.52%
中國90-72黎巴嫩7/115/51971.97%
中國85-69卡塔爾4/104/41355.27%
中國104-58印度8/125/52173.94%
中國70-57伊朗5/102/41355.27%
中國78-67菲律賓4/143/61133.05%
注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實得分率)是衡量球員進(jìn)攻的效率,其計算公式為:
TS%=$\frac{全場得分}{2×(投籃出手次數(shù)+0.44×罰球出手次數(shù))}$.
(Ⅰ)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中TS%超過50%的概率;
(Ⅱ)從上述9場比賽中隨機選擇兩場,求易建聯(lián)在這兩場比賽中TS%至少有一場超過60%的概率;
(Ⅲ)用x來表示易建聯(lián)某場的得分,用y來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠BCD=120°,M為側(cè)棱PD的三等分點(靠近D點),O為AC,BD的交點,且PO⊥面ABCD,PC=2.
(1)若在棱PD上存在一點N,且BN∥面AMC,確定點N的位置,并說明理由;
(2)求三棱錐A-PMC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD中,E,F(xiàn)分別是AD,BC的中點,P是對角線BD上的一點,直線EP,PF分別交AB,DC的延長線于M,N.證明:線段MN被直線EF所平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,矩形ACFE⊥底面ABCD,底面ABCD為等腰梯形,且AB∥CD,AB=2AD=2CD=2CF.
(1)求證:BC⊥平面ACFE;
(2)當(dāng)點M在線段EF上運動時,求平面MAB與平面FCB所成銳二面角余弦的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=ln(1-x),則函數(shù)f(x)的大致圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點A(4,1,3),B(6,3,2),且$\overrightarrow{AC}=3\overrightarrow{AB}$,則點C的坐標(biāo)為(10,7,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下面是關(guān)于復(fù)數(shù)z=$\frac{2}{-1+i}$的四個命題:P1:|z|=2;P2:z2=2i;P3:z的共軛復(fù)數(shù)為1+i;P4:z的虛部為-1.其中的真命題個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知半徑為2,圓心在直線y=x+2上的圓C.
(1)當(dāng)圓C經(jīng)過點A(2,2)且與y軸相切時,求圓C的方程;
(2)已知E(1,1),F(xiàn)(1,3),若圓C上存在點Q,使|QF|2-|QE|2=32,求圓心橫坐標(biāo)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案