15.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow$=$\sqrt{3}$$\overrightarrow{c}$,則向量$\overrightarrow{a}$與向量$\overrightarrow{c}$的夾角為$\frac{π}{6}$.

分析 作出圖形,根據(jù)向量的幾何意義和幾何知識(shí)求出夾角.

解答 解:以$\overrightarrow{a},\overrightarrow$為鄰邊作平行四邊形OACB,∵|$\overrightarrow{a}$|=|$\overrightarrow$|,
∴四邊形OACB是菱形,$\overrightarrow{OC}=\overrightarrow{a}+\overrightarrow$=$\sqrt{3}\overrightarrow{c}$.
設(shè)OA=AC=1,則OC=$\sqrt{3}$.
∴cos∠AOC=$\frac{1+3-1}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
∴∠AOC=$\frac{π}{6}$.
故答案為$\frac{π}{6}$.

點(diǎn)評(píng) 本題考查了平面向量加法的幾何意義,向量的夾角計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.相據(jù)下列各無(wú)窮數(shù)列的前4項(xiàng),寫出數(shù)列的一個(gè)通項(xiàng)公式:
(1)$\frac{2}{1×3}$,-$\frac{4}{3×5}$,$\frac{6}{5×7}$,-$\frac{8}{7×9}$,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$….

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.點(diǎn)D是△ABC中AB邊的中點(diǎn),CA=CB,E是CD的中點(diǎn),AE的延長(zhǎng)線交BC于F,記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\overrightarrow$B.$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+2)=$\frac{1}{f(x)}$,若x∈[2,3]時(shí),f(x)=x.
(1)求證:f(x)為周期函數(shù);
(2)求f(5.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,B、D是以AC為直徑的圓上的兩點(diǎn),其中AB=$\sqrt{t+1}$,AD=$\sqrt{t+2}$,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=( 。
A.1B.2C.tD.2t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(cosα,sinα),Q($\frac{3}{2}$,0),其中0<α<$\frac{π}{2}$.
(1)若$\overrightarrow{PQ}$$⊥\overrightarrow{PO}$,求cosα的值;
(2)若|$\overrightarrow{PQ}$|=|$\overrightarrow{PO}$|,求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知一幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4$-\frac{π}{6}$B.4$-\frac{π}{3}$C.4$+\frac{π}{3}$D.12$-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)P是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上一點(diǎn),過(guò)橢圓中心作直線交橢圓于A、B兩點(diǎn),直線PA、PB的斜率分別為k1,k2,且${k_1}{k_2}=-\frac{1}{4}$,則橢圓離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.F1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{2}$=1的左右焦點(diǎn),P為橢圓上一動(dòng)點(diǎn),F(xiàn)2關(guān)于直線PF1的對(duì)稱點(diǎn)為M,F(xiàn)1關(guān)于直線PF2的對(duì)稱點(diǎn)為N,則當(dāng)|MN|的最大值為( 。
A.2B.3C.4D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案