10.函數(shù)$sinhx=\frac{{{e^x}-{e^{-x}}}}{2}$稱為“雙曲正弦函數(shù)”,類似地,函數(shù)$coshx=\frac{{{e^x}+{e^{-x}}}}{2}$稱為“雙曲余弦函數(shù)”.
(Ⅰ)判斷雙曲正弦函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)雙曲函數(shù)的恒等變形多具有與三角函數(shù)的恒等變形相似甚至相同的形式,請(qǐng)判斷下列等式恒成立的是②.(填寫序號(hào))
①sinh2x+cosh2x=1;
②sinh2x=2sinhx•coshy;
③cosh2x=cosh2x-sinh2x.
(Ⅲ)請(qǐng)合理定義“雙曲正切函數(shù)”y=tanhx,寫出用tanhx表示tanh2x的恒等變形式,并證明之.

分析 (Ⅰ)利用奇函數(shù)的定義判斷雙曲正弦函數(shù)的奇偶性;
(Ⅱ)對(duì)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論;
(Ⅲ)(Ⅲ)y=tanhx=$\frac{sinhx}{coshx}$,e2x=$\frac{1+tanhx}{1-tanhx}$,即可得出結(jié)論.

解答 解:(Ⅰ)∵sin(-hx)=$\frac{{e}^{-x}-{e}^{x}}{2}$=-sinhx,
∴雙曲正弦函數(shù)是奇函數(shù);
(Ⅱ)①sinh2x+cosh2x=$\frac{{e}^{2x}+{e}^{-2x}-2}{4}$+$\frac{{e}^{2x}+{e}^{-2x}+2}{4}$≠1,不正確;
②sinh2x═$\frac{{e}^{2x}-{e}^{-2x}}{2}$=2sinhx•coshy,正確;
③cosh2x-sinh2x=$\frac{{e}^{2x}+{e}^{-2x}+2}{4}$-$\frac{{e}^{2x}+{e}^{-2x}-2}{4}$≠cosh2x,不正確.
(Ⅲ)y=tanhx=$\frac{sinhx}{coshx}$,∴e2x=$\frac{1+tanhx}{1-tanhx}$
tanh2x=$\frac{sinh2x}{cosh2x}$=$\frac{{e}^{2x}-{e}^{-2x}}{{e}^{2x}+{e}^{-2x}}$=-$\frac{2tanhx}{1+tan{h}^{2}x}$.
故答案為:②.

點(diǎn)評(píng) 本題為開放題型,考查類比推理,考查分析問(wèn)題、解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)0<a<1,在下列四個(gè)不等式中,正確的是( 。
A.(1-a)a>(1+a)aB.log1-a(1+a)<0C.(1-a)1+a>1D.${(1-a)}^{\frac{1}{a}}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=($\frac{co{s}^{2}x}{sinx+1}$-1)•(sinx-cosx).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.觀察下列三角形數(shù)表:
第一行                      1
第二行                    2   2
第三行                  3   4    3
第四行                 4  7    7    4
第五行               5  11  14    11   5

假設(shè)n行的第二個(gè)數(shù)為an(n≥2,n∈N*).
(1)依次寫出第八行的所有數(shù)字;
(2)歸納出an+1與an之間的關(guān)系式,并求出an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)y=lg(x2-x+k)的定義域?yàn)镽,則k的取值范圍是($\frac{1}{4}$,+∞),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.中心角為135°的扇形,其面積為S1,其圍成的圓錐的全面積為S2,則$\frac{{S}_{1}}{{S}_{2}}$=( 。
A.$\frac{11}{8}$B.$\frac{13}{8}$C.$\frac{8}{11}$D.$\frac{8}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,△PBD是直角三角形,∠PDB=90°,以BA為直徑作⊙O,設(shè)點(diǎn)C是圓⊙O與直線PD的公共點(diǎn),若∠ABC=∠DBC.
(1)求證:PD是⊙O的切線;
(2)若PA=6,BD=4,求PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則這個(gè)函數(shù)的周期和初相分別是( 。
A.2,-$\frac{π}{3}$B.2,-$\frac{π}{6}$C.π,-$\frac{π}{6}$D.π,-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等比數(shù)列{an}的前n項(xiàng)和為2n-1,求:
(1)數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an2}前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案