1.在生產(chǎn)過程中,測得100件纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量),將數(shù)據(jù)分組如表.
分組頻數(shù)頻率
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合計(jì)100
(Ⅰ)完成頻率分布表,并畫出頻率分布直方圖;
(Ⅱ)從纖度最小、最大的6件產(chǎn)品中任取2件,設(shè)取出的纖度在[1.30,1.34)內(nèi)的產(chǎn)品有ξ件,求ξ的分布列和期望.

分析 (Ⅰ)由頻率=$\frac{頻數(shù)}{總數(shù)}$,根據(jù)已知條件能完成頻率分布表,從而能畫出頻率分布直方圖.
(Ⅱ)由已知得ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.

解答 解:(Ⅰ)由頻率=$\frac{頻數(shù)}{總數(shù)}$,完成頻率分布表如下:

分組頻數(shù)頻率
[1.30,1.34)40.04
[1.34,1.38)250.25
[1.38,1.42)300.30
[1.42,1.46)290.29
[1.46,1.50)100.10
[1.50,1.54)20.02
合計(jì)1001.00
由頻率分布表,畫出頻率分布直方圖,如右圖:
(Ⅱ)由已知得ξ的可能取值為0,1,2,
P(ξ=0)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
P(ξ=1)=$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,
P(ξ=2)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{6}{15}$,
∴ξ的分布列為:
 ξ 0 1 2
 P $\frac{1}{15}$ $\frac{8}{15}$ $\frac{6}{15}$
Eξ=$0×\frac{1}{15}+1×\frac{8}{15}+2×\frac{6}{15}$=$\frac{4}{3}$.

點(diǎn)評 本題考查頻率分布表和頻率分布直方圖的作法,考查離散型隨機(jī)變量的分布列和期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2x與y=log2x的圖象( 。
A.關(guān)于x軸對稱B.關(guān)于原點(diǎn)對稱
C.關(guān)于直線y=x對稱D.關(guān)于直線y=-x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:解答題

已知等比數(shù)列,各項(xiàng),公比為.(1)設(shè),求證:

(1)數(shù)列是等差數(shù)列,并求出該數(shù)列的首項(xiàng)及公差

(2)設(shè)(1)中的數(shù)列單調(diào)遞減,求公比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l:x+my+4=0,若曲線x2+y2+2x-6y+1=0上存在兩點(diǎn)P、Q關(guān)于直線l對稱,則m的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.從某體校學(xué)生中選出男生14人,女生6人測量身高,被測學(xué)生身高的莖葉圖如圖所示(單位:cm),現(xiàn)規(guī)定,身高在180cm以上的參加校籃球隊(duì),180cm以下的參加田徑隊(duì).
(I)求女生身高的平均值;
(Ⅱ)①先采用分層抽樣的方式分別從籃球隊(duì)和田徑隊(duì)中選出5人參了加某項(xiàng)活動(dòng).籃球隊(duì)和田徑隊(duì)分別選出多少人?②若從這5人中隨機(jī)選2人,那么至少1人選自籃球隊(duì)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若不等式(x-a)2<1成立的充分不必要條件是$\frac{1}{2}$<x<$\frac{3}{2}$,則實(shí)數(shù)a的取值范圍是( 。
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a≤$\frac{3}{2}$C.a<$\frac{1}{2}$或a>$\frac{3}{2}$D.a≤$\frac{1}{2}$或a≥$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\sqrt{a{x^2}+bx+c}$(a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=aln x-ax-1(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x1,x2∈[1,+∞),比較ln(x1x2)與x1+x2-2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),其導(dǎo)函數(shù)f′(x)在(0,$\frac{π}{2}$)上總使得f(x)<f′(x)•tanx成立,則下列各式中一定成立的是( 。
A.f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$)B.f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)C.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

同步練習(xí)冊答案