11.設(shè)$a={log_{\frac{1}{2}}}3,b={(\frac{1}{2})^{0.4}},c={3^{\frac{1}{2}}}$則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵$a={log_{\frac{1}{2}}}3,b={(\frac{1}{2})^{0.4}},c={3^{\frac{1}{2}}}$,
∴$a=lo{g}_{\frac{1}{2}}3<lo{g}_{\frac{1}{2}}1=0$,
0<$b=(\frac{1}{2})^{0.4}$<$(\frac{1}{2})^{0}$=1,
$c={3}^{\frac{1}{2}}>{3}^{0}=1$,
∴c>b>a.
故選:A.

點評 本題考查三個數(shù)的大小的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,AB=5,BC=7,AC=8,則$\overrightarrow{BA}$•$\overrightarrow{BC}$的值為( 。
A.5B.-5C.15D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線C:$\frac{x^2}{4-k}+\frac{y^2}{k-1}$=1表示雙曲線,則k的取值范圍為( 。
A.1<k<4B.k>4C.k<0D.k<1或k>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.f(x)=$\frac{-{x}^{2}+x+k}{{e}^{x}}$有極值,則k的取值范圍是( 。
A.k≥$\frac{5}{4}$B.k>-$\frac{5}{4}$C.k≤-$\frac{5}{4}$D.k<-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=x2-2x,g(x)=ax+2(a>0),若命題:對于任意的x1∈[-1,2],存在x2∈[-1,2],使f(x1)=g(x2)為真命題,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求值:
(Ⅰ)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+lg1$;
(Ⅱ)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{6}$)-2+810.75+($\frac{1}{9}$)0-3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線y=kx與雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1無公共點,則實數(shù)k的取值范圍是k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{x+{2}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+\frac{a}{3}(x>0)}\end{array}\right.$在其定義域上只有一個零點,則實數(shù)a的取值范圍是a>16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三點A(1,2),B(3,5),C(5,6),則三角形ABC的面積為2.

查看答案和解析>>

同步練習(xí)冊答案