2.函數(shù)f(x)=alnx+bx2+1在與x軸交點(diǎn)處的切線方程為y=x-1,則ab=-3.

分析 先求出f(x)與x軸的交點(diǎn)坐標(biāo)aln1+b+1=0,通過求導(dǎo)得到$\frac{a}{x}$+2bx=a+2b=1,聯(lián)立方程組解出即可.

解答 解:∵切線方程為y=x-1,
∴f(x)與x軸的交點(diǎn)是(1,0),
k=$\frac{a}{x}$+2bx=a+2b=1,①,
把(1,0)代入f(x)得:
aln1+b+1=0,②,
由①②解得:a=3,b=-1,
故ab=-3,
故答案為:-3.

點(diǎn)評(píng) 本題考察了導(dǎo)數(shù)的應(yīng)用,考察切線方程問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)A(1,1),B(2,1),C(1,2),若-1≤λ≤2,2≤μ≤3,則$|{λ\overrightarrow{AB}+μ\overrightarrow{AC}}|$的取值范圍是(  )
A.[1,10]B.$[{\sqrt{5},\sqrt{13}}]$C.[1,5]D.$[{2,\sqrt{13}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x取實(shí)數(shù),則f(x)與g(x)表示同一個(gè)函數(shù)的是( 。
A.$f(x)={x^2},g(x)=\sqrt{x^2}$B.$f(x)=\frac{{{{(\sqrt{x})}^2}}}{x},g(x)=\frac{x}{{{{(\sqrt{x})}^2}}}$
C.f(x)=1,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在正方體ABCD-A′B′C′D'′中,O是B′D′的中點(diǎn).
(1)M、N分別是棱AB、B′C′的中點(diǎn),求證:MN∥面AA′O.
(2)在線段AO上是否存在一點(diǎn)E,使得面A′EB′⊥面AOB′,若存在,請(qǐng)確定E點(diǎn)位置.;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z滿足$z=\frac{i-2}{i-1}$(i為虛數(shù)單位),則|z|=$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,$\overrightarrow{AB}•\overrightarrow{AC}=\frac{{2\sqrt{3}}}{3}{S_{△ABC}}$.
(1)求角A的大。
(2)若a=4,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合M={x|x2-2x-3≤0},N={x|y=lgx},則M∩N=(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\{log_{\frac{1}{4}}}(x-3)+1,x>4\end{array}\right.$,若實(shí)數(shù)a、b、c互不相等,且滿足f(a)=f(b)=f(c),則a+b+c的取值范圍是(8,23).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(\;a>b>0\;)$的兩個(gè)焦點(diǎn)F1,F(xiàn)2在x軸上,P為此橢圓上一點(diǎn),且滿足$∠P{F_1}{F_2}=\frac{π}{6},∠PO{F_2}=\frac{π}{3}$,則此橢圓的離心率是(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.2$\sqrt{2}$-2D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案