18.${({\frac{1+i}{1-i}})^{2015}}$=( 。
A.iB.-1C.1D.-i

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)的周期性即可得出.

解答 解:∵$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,i4=1.
∴原式=(i4503•i3
=-i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x-1-lnx
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)全集U=R,A={x|$\frac{x-2}{x+1}$<0},B={y=cosx,x∈A},則A∩B=(cos2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)a≥0,b≥0,且ab=0,則稱a與b互補(bǔ),記f(a,b)=$\sqrt{{a}^{2}+^{2}}$-a-b(a≥0,b≥0),那么f(a,b)=0是a與b互補(bǔ)的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xoy中,圓C的參數(shù)方程$\left\{\begin{array}{l}x=1+2cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.(φ$為參數(shù)).以o為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)若將圓C向左平移一個(gè)單位,再經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲線C′,設(shè)M(x,y)為曲線C′上任一點(diǎn),求x2-$\sqrt{3}$xy+2y2的最小值,并求相應(yīng)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且4sinAsinC-4cos2$\frac{A-C}{2}$=$\sqrt{2}$-2.
(Ⅰ)求角B的大小
(Ⅱ)若C=$\frac{π}{3}$,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-2|-|x+1|.
(Ⅰ)求f(x)的最值;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-3x<0},B={1,a},且A∩B有4個(gè)子集,則實(shí)數(shù)a的取值范圍是(  )
A.(0,3)B.(0,1)∪(1,3)C.(0,1)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若關(guān)于x的函數(shù)f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin({x+\frac{π}{4}})+x}}{{2{x^2}+cosx}}$(t≠0)的最大值為a,最小值為b,且a+b=2,則實(shí)數(shù)t的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案