分析 (Ⅰ)通過設(shè)等差數(shù)列{an}的公差為d,利用a1+5d=13、2a1+4d=14計算可得首項與公差,進而可得結(jié)論;
(Ⅱ)通過(I)裂項可知bn=$\frac{1}{n}$-$\frac{1}{n+1}$,(n∈N*),并項相加即得結(jié)論.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
∵a6=13,a2+a4=14,
∴a1+5d=13,2a1+4d=14,
解得:a1=3,d=2,
∴an=3+2(n-1)=2n+1,
Sn=3n+$\frac{n(n-1)}{2}$×2=n2+2n;
(Ⅱ)由(I)可知bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$=$\frac{4}{2n×2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,(n∈N*),
∴Tn=b1+b2+…+bn
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
點評 本題考查數(shù)列的通項及前n項和,裂項、并項相加是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,4] | B. | (-4,4) | C. | [-4,0)∪(0,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com