分析 (1)求出向量$\overrightarrow{AB},\overrightarrow{OA}$的坐標(biāo)和模長,根據(jù)條件列方程解出n,t;
(2)寫出$\overrightarrow{AC}$的坐標(biāo),根據(jù)向量共線列出等式整理;
(3)根據(jù)sinθ的范圍和最值判斷t和sinθ的值.
解答 解:(1)$\overrightarrow{AB}$=(n,t-4),$|\overrightarrow{AB}|$=$\sqrt{{n}^{2}+(t-4)^{2}}$,$|\overrightarrow{OA}|=\sqrt{2}$.
∵$\overrightarrow{AB}⊥\overrightarrow{a}$,且$\frac{\sqrt{2}}{2}$|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$|,
∴$\left\{\begin{array}{l}{n-t+4=0}\\{\sqrt{{n}^{2}+(t-4)^{2}}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{n=\sqrt{2}}\\{t=4+\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{n=-\sqrt{2}}\\{t=4-\sqrt{2}}\end{array}\right.$.
∴$\overrightarrow{AB}$=($\sqrt{2}$,$\sqrt{2}$)或$\overrightarrow{AB}$=(-$\sqrt{2}$,-$\sqrt{2}$).
(2)$\overrightarrow{AC}$=(t,ksinθ-4),
∵$\overrightarrow{AC}∥\overrightarrow{a}$,
∴t+ksinθ-4=0,
∴t=4-ksinθ.θ∈[0,$\frac{π}{2}$]
(3)∵θ∈[0,$\frac{π}{2}$],∴sinθ∈[0,1].
∵tsinθ有最大值1,∴t=1.此時(shí)sinθ=1.
∴C(1,k).
∴$\overrightarrow{AC}$=(1,k-4).
點(diǎn)評(píng) 本題考查了平面向量垂直,共線與數(shù)量積的關(guān)系,正弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,3] | B. | [4,6] | C. | [4,9] | D. | [5,9] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{4}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2+$\sqrt{2}$ | C. | 3+$\sqrt{2}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | $\frac{3}{4}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com