13.已知數(shù)列{an}滿足a1=1,${a_{n+1}}={(\sqrt{a_n}+3)^2}$,則數(shù)列{an}的通項公式為an=(3n-2)2

分析 由a1=1,${a_{n+1}}={(\sqrt{a_n}+3)^2}$>0,可得$\sqrt{{a}_{n+1}}$-$\sqrt{{a}_{n}}$=3,利用等差數(shù)列的通項公式即可得出.

解答 解:∵a1=1,${a_{n+1}}={(\sqrt{a_n}+3)^2}$>0,
∴$\sqrt{{a}_{n+1}}$-$\sqrt{{a}_{n}}$=3,
∴數(shù)列$\{\sqrt{{a}_{n}}\}$是等差數(shù)列,首項為1,公差為3.
∴$\sqrt{{a}_{n}}$=1+3(n-1)=3n-2.
∴an=(3n-2)2
故答案為:(3n-2)2

點評 本題考查了等差數(shù)列的通項公式,考查了變形能力、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平行四邊形ABCD中,O為對角線交點,試用$\overrightarrow{BA}$、$\overrightarrow{BC}$表示$\overrightarrow{CO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求值:sin26°+cos236°+sin6°cos36°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:(2a-1)x-(a+3)y-(a-11)=0(a∈R)交x軸正半軸于點A,y軸正半軸于點B,當(dāng)三角形AOB(O為坐標(biāo)原點)面積最小時a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若${C_{20}}^{2x-7}={C_{20}}^x$,則正整數(shù)x=7或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={1,2,5},B={a+4,a},若A∩B=B,則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定積分(${∫}_{\frac{-π}{3}}^{\frac{π}{3}}$(2x+sinx)dx等于(  )
A.0B.$\frac{π^2}{9}-\frac{1}{2}$C.$\frac{{2{π^2}}}{9}-1$D.$\frac{{2{π^2}}}{9}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直三棱柱的底面是等腰直角三角形,斜邊長$\sqrt{2}$,且其外接球的面積是16π,則該三棱柱的側(cè)棱長為( 。
A.$\sqrt{14}$B.2$\sqrt{3}$C.4$\sqrt{6}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.現(xiàn)有1000件產(chǎn)品,甲產(chǎn)品有10件,乙產(chǎn)品有20件,丙產(chǎn)品有970件,現(xiàn)隨機(jī)不放回抽取3件產(chǎn)品,恰好甲乙丙各一件的概率是( 。
A.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^3)}^3}}}$
B.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^1)}^3}}}$
C.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{C_{1000}^3}}$
D.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{A_{1000}^3}}$

查看答案和解析>>

同步練習(xí)冊答案