9.若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,則該三棱柱的表面積為24+8$\sqrt{3}$. 

分析 由已知中底面是正三角形的三棱柱,可得棱柱的底面邊長(zhǎng)和高,計(jì)算出各個(gè)面的面積相加可得答案.

解答 解:由已知中底面是正三角形的三棱柱,
可得棱柱的底面邊長(zhǎng)為4,
棱柱的高為2,
故棱柱的底面面積為$\frac{\sqrt{3}}{4}×{4}^{2}$=4$\sqrt{3}$,
側(cè)面的面積為:4×3×2=24,
故棱柱的表面積為:24+8$\sqrt{3}$,
故答案為:24+8$\sqrt{3}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若角α,β的終邊關(guān)于y軸對(duì)稱,則α,β的 關(guān)系一定是( 。
A.α+β=πB.α-β=πC.α-β=(2k+1}π,k∈ZD.α+β=(2k+1}π,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足|x-y+2|≤1,|3x-2y|≤3,則|5x+4|的最大值為49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖是某幾何體的三視圖,
(1)你能想象出它的幾何結(jié)構(gòu)并畫出它的直觀圖嗎?
(2)根據(jù)三視圖的有關(guān)數(shù)據(jù)(單位:mm),計(jì)算這個(gè)幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),若雙曲線上存在一點(diǎn)P,使得|PF1|,2a,|PF2|成等差數(shù)列,則雙曲線離心率的取值范圍是( 。
A.(1,2)B.(1,2]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知兩點(diǎn)M(-2,0),N(2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),且滿足|$\overrightarrow{MN}$||$\overrightarrow{MP}$|+$\overrightarrow{MN}$•$\overrightarrow{NP}$=0.
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)過(guò)點(diǎn)N的直線l的斜率為k,且與曲線C相交于點(diǎn)S、T,若S、T兩點(diǎn)只在第二象限內(nèi)運(yùn)動(dòng),線段ST的垂直平分線交x軸于Q點(diǎn),求Q點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某四面體的三視圖如圖所示.該四面體的六條棱中,最大長(zhǎng)度是2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(c,0),右頂點(diǎn)為A(a,0),過(guò)F作x軸的垂線與雙曲線交于B,C兩點(diǎn),過(guò)B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D.,若D到直線BC的距離等于a+c,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z滿足$\overline{z}$(1-i)=1+i(i是虛數(shù)單位),則z=-i.

查看答案和解析>>

同步練習(xí)冊(cè)答案