分析 (Ⅰ)連結(jié)AB,推導(dǎo)出OA⊥MN,BP⊥BC,從而B、P、A、Q四點共圓,由此能證明PQ∥AC.
(Ⅱ)過點A作直徑AE,連結(jié)CE,則△ECA為直角三角形.推導(dǎo)出Rt△PAQ∽Rt△ECA,由此能求出PQ.
解答 證明:(Ⅰ)如圖,連結(jié)AB.
∵MN切⊙O于點A,∴OA⊥MN.?(1分)
又∵BP⊥BC,∴B、P、A、Q四點共圓,(2分)
所以∠QPA=∠ABC.?(3分)
又∵∠CAN=∠ABC,∴∠CAN=∠QPA.?(4分)
∴PQ∥AC.(5分)
解:(Ⅱ)過點A作直徑AE,連結(jié)CE,則△ECA為直角三角形.?(6分)
∵∠CAN=∠E,∠CAN=∠QPA,∴∠E=∠QPA.(7分)
∴Rt△PAQ∽Rt△ECA,∴$\frac{PQ}{EA}$=$\frac{AQ}{CA}$,(9分)
故$PQ=\frac{AQ•EA}{CA}$=$\frac{2ar}$.(10分)
點評 本題考查直線平行的證明,考查線段長的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,-1] | B. | [-1,3) | C. | (-∞,-4] | D. | (-∞,-4]∪[1,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com