1.在△ABC中,AB=5,BC=7,AC=8,則$\overrightarrow{BA}$•$\overrightarrow{BC}$的值為( 。
A.5B.-5C.15D.-15

分析 求出B,代入數(shù)量積公式即可.

解答 解:cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{1}{7}$.
∴$\overrightarrow{BA}•\overrightarrow{BC}$=AB•BC•cosB=5.
故選A.

點評 本題考查了向量的夾角,數(shù)量級運算及解三角形,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x>0,y>0,且x+y=$\frac{1}{3}$,則xy的最大值為(  )
A.$\frac{2\sqrt{3}}{3}$B.2$\sqrt{3}$C.$\frac{1}{9}$D.$\frac{1}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}+1),x≤0}\\{sinx,0<x≤π}\end{array}\right.$,則不等式f(x)>$\frac{1}{2}$的解集為(-∞,-1)∪($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=$\frac{ax+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),且$f(\frac{1}{2})=\frac{2}{5}$
(1)求f(x)的解析式;
(2)試判斷f(x)在(-1,1)上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明;
(3)若f(t-1)+f(t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.五名男同學(xué),三名女同學(xué)外出春游,平均分成兩組,每組4人,則女同學(xué)不都在同一組的不同分法有( 。
A.30種B.65種C.35種D.70種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合M={y|y=x2},N={x|y=$\sqrt{{x}^{2}+2x+1}$},則M∩N為( 。
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知雙曲線與橢圓$\frac{x^2}{36}+\frac{y^2}{27}=1$有相同的焦點,且虛軸的長為4.
(Ⅰ)求雙曲線的方程;
(Ⅱ)求雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,4),且($\overrightarrow{a}$-$\overrightarrow$)∥(2$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$a={log_{\frac{1}{2}}}3,b={(\frac{1}{2})^{0.4}},c={3^{\frac{1}{2}}}$則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

同步練習(xí)冊答案