17.已知集合A={-1,0,1,2},集合B={y|$y=cos\frac{π}{2}x$,x∈A},則A∩B的子集的個數(shù)是( 。
A.8B.4C.2D.1

分析 求出集合B中y的值確定出B,找出A與B的交集,即可確定出A∩B子集的個數(shù).

解答 解:由y=cos$\frac{π}{2}$x,x∈A={-1,0,1,2},
得到y(tǒng)=0,1,-1,即B={-1,0,1},
∴A∩B={-1,0,1},
則A∩B的子集的個數(shù)是23=8.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:$\frac{sin(180°+α)cos(180°+α)}{cos(540°+α)tan(α-540°)}$=-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知過點(-1,3),(2,a)的直線的傾斜角為45°,則a的值為( 。
A.6B.4C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個焦點,P在橢圓上,且△PF1F2的面積為$\frac{{\sqrt{2}}}{2}{b^2}$,則cos∠F1PF2=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=sinx-cos(x+\frac{π}{6}),x∈[0,π]$的值域是( 。
A.$[-2,\sqrt{3}]$B.$[-\frac{{\sqrt{3}}}{2},1]$C.$[-\sqrt{3},\sqrt{3}]$D.$[-\frac{{\sqrt{3}}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列五個導(dǎo)數(shù)式:
①(x4)′=4x3;
②(cosx)′=sinx;  
③(2x)′=2xln2;
④${(lnx)^'}=-\frac{1}{x}$;
⑤${(\frac{1}{x})^'}=\frac{1}{x^2}$.
其中正確的導(dǎo)數(shù)式共有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在(-∞,0)上為減函數(shù)的是( 。
A.$y={x^{\frac{2016}{2015}}}$B.$y={x^{\frac{2013}{2015}}}$C.$y={x^{-\frac{2014}{2015}}}$D.$y={x^{-\frac{2015}{2016}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a、b是兩條不重合的直線,α、β是兩個不重合的平面,給出四個命題:
①a∥b,b∥α,則a∥α
②a、b?α,a∥β,b∥β,則α∥β
③a⊥α,b∥α,則a⊥b
其中正確命題的是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)經(jīng)過點$({1,\frac{{\sqrt{2}}}{2}})$,離心率為$\frac{{\sqrt{2}}}{2}$,過橢圓C的右焦點F作垂直于x軸的直線與橢圓C相交于A,B兩點,直線l:y=mx+n與橢圓C交于C,D兩點,與線段AB相交于一點(與A,B不重合).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)直線l與圓x2+y2=1相切時,四邊形ACBD的面積是否有最大值?若有,求出最大值及對應(yīng)直線l的方程,若沒有,說明理由.

查看答案和解析>>

同步練習(xí)冊答案