13.如圖,圓O:x2+y2=8內(nèi)有-點P(-1,2),AB為過P且傾斜角為135°的弦.
(1)求AB的長;
(2)若圓C與圓O內(nèi)切又與弦AB切于點P,求圓C的方程.

分析 (1)依題意直線AB的斜率為-1,直線AB的方程,根據(jù)圓心0(0,0)到直線AB的距離,由弦長公式求得AB的長.
(2)設(shè)圓C的圓心為(a,a+3),則$\sqrt{{a}^{2}+(a+3)^{2}}$=2$\sqrt{2}$-$\sqrt{(a+1)^{2}+(a+3-2)^{2}}$,求出a,即可求圓C的方程.

解答 解:(1)依題意直線AB的斜率為-1,直線AB的方程為:y-2=-(x+1),
圓心0(0,0)到直線AB的距離為d=$\frac{\sqrt{2}}{2}$,則|AB|=2$\sqrt{8-\frac{1}{2}}$=$\sqrt{30}$,∴AB的長為$\sqrt{30}$.
(2)過P與直線AB垂直的直線方程為y-2=x+1,即y=x+3,
設(shè)圓C的圓心為(a,a+3),則$\sqrt{{a}^{2}+(a+3)^{2}}$=2$\sqrt{2}$-$\sqrt{(a+1)^{2}+(a+3-2)^{2}}$,
∴a=-$\frac{3}{2}$,∴圓心為(-$\frac{3}{2}$,$\frac{3}{2}$),半徑為$\frac{3}{2}$$\sqrt{2}$,
∴圓C的方程為(x+$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=$\frac{9}{2}$.

點評 本題考查用點斜式求直線方程,點到直線的距離公式,弦長公式的應(yīng)用,考查圓的方程,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.過平面區(qū)域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+a≥0}\\{x+y+2≤0}\end{array}\right.$,若z=x+2y的最小值為-8,則實數(shù)a=( 。
A.-6B.-5C.-4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,求使向量(2$\overrightarrow{a}$+λ$\overrightarrow$)與(λ$\overrightarrow{a}$-3$\overrightarrow$)的夾角是直角的λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足a1+a2+…+an+2n=$\frac{1}{2}$(an+1+1),n∈N*,且a1=1,求證:
(1)數(shù)列{an+2n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.給出下列三個集合,指出它們之間的關(guān)系,并加以區(qū)別;A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知橢圓Г1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線Г2:x2-$\frac{{y}^{2}}{{m}^{2}}$=1共焦點,且雙曲線Г1的離心率為$\sqrt{2}$,直線l:y=kx過點(a,$\sqrt{{a}^{2}-^{2}}$),且分別與雙曲線、橢圓在第一象限交于A,B兩點,O為原點,若OA=AB,則橢圓的離心率為$\frac{\sqrt{6}-\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.盒子中放有3張形狀和圖案完全相同的刮獎券,每張獎券的兩面刮開都有一定數(shù)額的獎金,一張兩面都為1元,一張兩面都為2元,還有一張為一面1元,另一面2元.
(Ⅰ)若小李從盒子中隨機抽出一張獎券,將其放在桌面上,然后刮開向上的一面發(fā)現(xiàn)為2元,求該獎券另一面仍為2元的概率.
(Ⅱ)若小李和小張先后從盒子中各隨機抽出一張獎券,并將獎券放在桌面上,刮開面朝上的部分并各自獲得所抽獎券朝上一面刮開的金額,求2人所獲得總獎金的概率分布,并求其期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示,以正方體ABCD-A1B1C1D1的頂點D為坐標原點O,如圖建立空間直角坐標系,則與$\overrightarrow{{A}_{1}C}$共線的向量的坐標可以是( 。
A.(1,$\sqrt{2}$,$\sqrt{2}$)B.(1,1,$\sqrt{2}$)C.($\sqrt{2}$,-$\sqrt{2}$,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{2}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=2sinx-1-m在x∈[$\frac{π}{3}$,$\frac{7π}{6}$]上有零點,則實數(shù)m的取值范圍是[-2,1].

查看答案和解析>>

同步練習冊答案