A. | $-\frac{1}{2}$ | B. | $-\frac{1}{4}$ | C. | 0 | D. | $-\frac{1}{8}$ |
分析 根據(jù)已知可得函數(shù)y=f(x)是周期為2的周期函數(shù),結合$x∈[0,\frac{1}{2}]$時,f(x)=-x2,可得答案.
解答 解:∵函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(t)=f(1-t),
∴f(x+2)=f[1-(x+2)]=f(-x-1)=-f(x+1)=-f[1-(x+1)]=-f(-x)=f(x),
即函數(shù)y=f(x)是周期為2的周期函數(shù),
故f(2015)=f(1)=-f(0),
又∵$x∈[0,\frac{1}{2}]$時,f(x)=-x2,
∴f(2015)=f(1)=-f(0)=0,
故選:C
點評 本題考查的知識點是函數(shù)的奇偶性,函數(shù)的對稱性,函數(shù)的周期性,函數(shù)求值,根據(jù)已知分析出函數(shù)y=f(x)是周期為2的周期函數(shù),是解答的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a≤1且b≤1,則a+b≤2 | B. | 若a≤1或b≤1,則a+b≤2 | ||
C. | 若a+b≤2,則a≤1且b≤1 | D. | 若a+b≤2,則a≤1或b≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,3} | B. | {1,2,3} | C. | {1,2,3,4} | D. | {1,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com