17.設定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(1-t),且$x∈[0,\frac{1}{2}]$時,f(x)=-x2,則f(2015)的值等于(  )
A.$-\frac{1}{2}$B.$-\frac{1}{4}$C.0D.$-\frac{1}{8}$

分析 根據(jù)已知可得函數(shù)y=f(x)是周期為2的周期函數(shù),結合$x∈[0,\frac{1}{2}]$時,f(x)=-x2,可得答案.

解答 解:∵函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(t)=f(1-t),
∴f(x+2)=f[1-(x+2)]=f(-x-1)=-f(x+1)=-f[1-(x+1)]=-f(-x)=f(x),
即函數(shù)y=f(x)是周期為2的周期函數(shù),
故f(2015)=f(1)=-f(0),
又∵$x∈[0,\frac{1}{2}]$時,f(x)=-x2,
∴f(2015)=f(1)=-f(0)=0,
故選:C

點評 本題考查的知識點是函數(shù)的奇偶性,函數(shù)的對稱性,函數(shù)的周期性,函數(shù)求值,根據(jù)已知分析出函數(shù)y=f(x)是周期為2的周期函數(shù),是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,已知B、C是二面角α-l-β棱上兩點AB?α,AB⊥l,CD?β,CD⊥l,AB=BC=1,CD=$\sqrt{3}$,AD=2$\sqrt{2}$,則二面角α-l-β的大小是150°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.方程$\frac{x^2}{5-m}+\frac{y^2}{m+3}=1$表示焦點在y軸上的橢圓,則的m取值范圍為1<m<5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設a,b∈R,命題“若a>1且b>1,則a+b>2”的逆否命題是( 。
A.若a≤1且b≤1,則a+b≤2B.若a≤1或b≤1,則a+b≤2
C.若a+b≤2,則a≤1且b≤1D.若a+b≤2,則a≤1或b≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知$\vec a=(sinπx,1),\vec b=(\sqrt{3},cosπx)$,$f(x)=\vec a•\vec b$
(I)若x∈[0,2],求$f(x)=\vec a•\vec b$的單調遞增區(qū)間;
(Ⅱ)設y=f(x)的圖象在y軸右側的第一個最高點的坐標為P,第一個最低點的坐標為Q,坐標原點為O,求∠POQ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合U={1,2,3,4},A={1,3},B={1,3,4},則A∪(∁UB)=(  )
A.{1,3}B.{1,2,3}C.{1,2,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在(2x-1)7的二項展開式中,第四項的系數(shù)為-560.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標系xoy中,已知直線l:8x+6y+1=0,圓C1::x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當t=-1時,試判斷圓C1與圓C2的位置關系,并說明理由;
(2)若圓C1與圓C2關于直線l對稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)的焦點是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{p}$=1的一個焦點,則雙曲線方程為$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

同步練習冊答案