14.已知△ABC的面積為$\frac{{a}^{2}-(b-c)^{2}}{4}$,則sinA+cosA=1.

分析 由三角形的面積公式可得$\frac{1}{2}$bcsinA=$\frac{1}{4}$[a2-(b-c)2],整理可得b2+c2-a2=2bc-2bcsinA,由余弦定理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2bc-2bcsinA}{2bc}$=1-sinA,即可解得sinA+cosA=1.

解答 解:由三角形的面積公式可得$\frac{1}{2}$bcsinA=$\frac{1}{4}$[a2-(b-c)2],
即2bcsinA=a2-b2-c2+2bc,
則b2+c2-a2=2bc-2bcsinA,
由余弦定理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2bc-2bcsinA}{2bc}$=1-sinA,
即sinA+cosA=1,
故答案為:1.

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應用,屬于基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.過點P(2,3)的圓C:x2+y2-2x-2y+1=0的切線方程為( 。
A.y=3B.x=2C.x=2或3x-4y+6=0D.3x-4y+6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.集合A={x,1},B={y,1,2},其中x,y∈{1,2,…,8}且A⊆B,把滿足上述條件的一對有序整數(shù)(x,y)作為一個點,這樣的點的個數(shù)是( 。
A.8B.12C.13D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若用m,n表示兩條不同的直線,用α表示一個平面,則下列命題正確的是( 。
A.若m∥n,n?α,則m∥αB.若m∥α,n?α,則m∥nC.若m∥α,n∥α,則m∥nD.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.Sn為數(shù)列{an}的前n項和,a1=1,Sn=$\frac{n}{n-1}$Sn-1+n (n≥2,n∈N+),求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如果-$\frac{1}{a}+\frac{2}{x}$+2x≥0在x∈(0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知奇函數(shù)f(x)=ln(m+x)-1n(1-x),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$=1,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|的最小值為$\sqrt{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知tanθ=7,則sinθcosθ+cos2θ的值為( 。
A.$\frac{1}{50}$B.$\frac{3}{50}$C.$\frac{4}{25}$D.$\frac{2}{25}$

查看答案和解析>>

同步練習冊答案