A. | (-∞,e] | B. | [0,e] | C. | (-∞,e) | D. | [0,e) |
分析 由f(x)的導函數(shù)形式可以看出,需要對k進行分類討論來確定導函數(shù)為0時的根.
解答 解:∵函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}$-k($\frac{2}{x}$+lnx),
∴函數(shù)f(x)的定義域是(0,+∞)
∴f′(x)=$\frac{{e}^{x}{x}^{2}-2x{e}^{x}}{{x}^{4}}$-k(-$\frac{2}{{x}^{2}}$+$\frac{1}{x}$)=$\frac{({e}^{x}-kx)(x-2)}{{x}^{3}}$
∵x=2是函數(shù)f(x)的唯一一個極值點
∴x=2是導函數(shù)f′(x)=0的唯一根.
∴ex-kx=0在(0,+∞)無變號零點,
令g(x)=ex-kx
g′(x)=ex-k
①k≤0時,g′(x)>0恒成立.g(x)在(0,+∞)時單調(diào)遞增的
g(x)的最小值為g(0)=1,g(x)=0無解
②k>0時,g′(x)=0有解為:x=lnk
0<x<lnk時,g′(x)<0,g(x)單調(diào)遞減
lnk<x時,g′(x)>0,g(x)單調(diào)遞增
∴g(x)的最小值為g(lnk)=k-klnk
∴k-klnk>0
∴k<e,
由y=ex和y=ex圖象,它們切于(1,e),
綜上所述,k≤e.
故選C
點評 本題考查由函數(shù)的導函數(shù)確定極值問題.對參數(shù)需要進行討論.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1 | C. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m=2 | B. | m<2 | C. | m≤2 | D. | m≥2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3)∪(-3,0] | B. | (-∞,-3)∪(-3,1] | C. | (-3,0] | D. | (-3,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,x2+5x≥6 | B. | ?x∈R,x2+5x=6 | C. | ?x0∈R,x02+5x0≥6 | D. | ?x∈R,x02+5x0<6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com