13.若AB是過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中心的一條弦,M是橢圓上任意一點,且AM、BM與坐標軸不平行,kAM、kBM分別表示直線AM、BM的斜率,則kAM•kBM=-$\frac{^{2}}{{a}^{2}}$.

分析 設(shè)直線AB的斜率存在時方程為y=kx,A(x1,y1),B(x2,y2).M(x0,y0).代入橢圓方程可得${y}_{0}^{2}$=$\frac{^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$.直線方程與橢圓方程聯(lián)立化為x2=$\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$=-x1x2,x1+x2=y1+y2=0,y1y2=k2x1x2.代入kAM•kBM=$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$•$\frac{{y}_{0}-{y}_{2}}{{x}_{0}-{x}_{2}}$=$\frac{{y}_{0}^{2}-{y}_{0}({y}_{1}+{y}_{2})+{y}_{1}{y}_{2}}{{x}_{0}^{2}-{x}_{0}({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$,化簡即可得出.

解答 解:設(shè)直線AB的斜率存在時方程為y=kx,A(x1,y1),B(x2,y2).M(x0,y0).
則$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{^{2}}=1$,解得${y}_{0}^{2}$=$\frac{^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$.
聯(lián)立$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,化為x2=$\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$,
且x1+x2=y1+y2=0,x1x2=-$\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$,
y1y2=k2x1x2=-k2•$\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$.
∴kAM•kBM=$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$•$\frac{{y}_{0}-{y}_{2}}{{x}_{0}-{x}_{2}}$=$\frac{{y}_{0}^{2}-{y}_{0}({y}_{1}+{y}_{2})+{y}_{1}{y}_{2}}{{x}_{0}^{2}-{x}_{0}({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$=$\frac{{y}_{0}^{2}-\frac{{a}^{2}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}}{{x}_{0}^{2}-\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}}$=$\frac{\frac{^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})-\frac{{a}^{2}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}}{{x}_{0}^{2}-\frac{{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}}$=-$\frac{^{2}}{{a}^{2}}$.
故答案為:-$\frac{^{2}}{{a}^{2}}$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.半徑為1的球的內(nèi)部有4個大小相同的半徑為r的小球,則小球半徑r可能的最大值為$\sqrt{6}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R)
(1)若a=0,當x∈[$\frac{1}{2}$,1]時恒有f(x)≥0,求b的取值范圍;
(2)若b=-1,試在直角坐標平面內(nèi)找出橫坐標不同的兩個點,使得函數(shù)y=f(x)的圖象永遠不經(jīng)過這兩點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的離心率e=$\frac{1}{2}$,則m的值為( 。
A.3B.1C.16或1D.$\frac{16}{3}$或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.方程$\frac{x^2}{5-m}+\frac{y^2}{m+3}=1$表示焦點在y軸上的橢圓,則的m取值范圍為1<m<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}$=1及以下3個函數(shù):①f(x)=x;②f(x)=sinx;③f(x)=xsinx,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b∈R,命題“若a>1且b>1,則a+b>2”的逆否命題是( 。
A.若a≤1且b≤1,則a+b≤2B.若a≤1或b≤1,則a+b≤2
C.若a+b≤2,則a≤1且b≤1D.若a+b≤2,則a≤1或b≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合U={1,2,3,4},A={1,3},B={1,3,4},則A∪(∁UB)=( 。
A.{1,3}B.{1,2,3}C.{1,2,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知目標函數(shù)z=2x+y且變量x,y滿足下列條件$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y<25\\ x≥1\end{array}\right.$,則( 。
A.zmax=12,zmin=3B.zmax=12,無最小值
C.無最大值,zmin=3D.無最小值也無最大值

查看答案和解析>>

同步練習(xí)冊答案