13.U=x2+y2+1與V=2(x+y-1)的大小關(guān)系是U>V.

分析 作差配方即可比較出大。

解答 解:U-V=x2+y2+1-2(x+y-1)=(x-1)2+(y-1)2+1>0,
∴U>V.
故答案為:U>V.

點(diǎn)評(píng) 本題考查了“作差法”、“配方法”比較數(shù)的大小,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某人最近7天收到的聊天信息數(shù)分別是5,10,6,8,9,7,11,則該組數(shù)據(jù)的方差為( 。
A.$\frac{24}{7}$B.4C.$\frac{16}{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an} 滿足an+1-an=2,且a3=8,則a6=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.(x-3)n的展開式中只有第3項(xiàng)的二項(xiàng)式系數(shù)最大,則n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosθ\\ y=\sqrt{10}sinθ\end{array}\right.$(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ
將曲線C1的參數(shù)方程化為普通方程,將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),若P(X≤2)=0.72,則P(X≤0)=( 。
A.0.22B.0.28C.0.36D.0.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sin(ωx+φ)+k(A>0,|φ|<$\frac{π}{2}$)的最大值為3,最小值為1,最小正周期為π,直線x=$\frac{π}{3}$是其圖象的一條對(duì)稱軸,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式可以為( 。
A.g(x)=sin2x+2B.g(x)=sin(2x+$\frac{π}{6}$)+2C.g(x)=sin(2x+$\frac{π}{6}$)+1D.g(x)=sin(4x-$\frac{π}{3}$)+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)所有棱長(zhǎng)均為$\sqrt{2}$的正三棱錐(底面是正三角形,頂點(diǎn)在底面的射影是底面的中心)的頂點(diǎn)與底面的三個(gè)頂點(diǎn)均在某個(gè)球的球面上,則此球的體積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$,則向量$\vec a$與$\vec b$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{6}$B.-$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案