5.已知函數(shù)f(x)=ax+$\frac{x}$+2-2a(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行.
(1)求a,b滿足的關(guān)系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(3)證明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$(2n+1)+$\frac{n}{2n+1}$(n∈N*).

分析 (1)利用函數(shù)在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行,得到f'(1)=2,然后利用導(dǎo)數(shù)確定a,b滿足的關(guān)系式.
(2)構(gòu)造函數(shù)g(x)=f(x)-2lnx=ax+$\frac{a-2}{x}$+2-2a-2lnx,x∈[1,+∞).利用導(dǎo)數(shù)求函數(shù)的最值即可.
(3)取a=1得x-$\frac{1}{x}$≥2lnx,令x=$\frac{2n+1}{2n-1}$>1,得$\frac{1}{2n-1}$>$\frac{1}{2}$ln$\frac{2n+1}{2n-1}$+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),上式中n=1,2,3,…,n,然后n個(gè)不等式相加得結(jié)論.

解答 (1)解:函數(shù)的導(dǎo)數(shù)為f′(x)=a-$\frac{{x}^{2}}$,
因?yàn)閒(x)=ax+$\frac{x}$+2-2a(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行.
所以f'(1)=2,即f'(1)=a-b=2,所以b=a-2.
(2)解:因?yàn)閎=a-2,所以f(x)=ax+$\frac{a-2}{x}$+2-2a,
若f(x)≥2lnx,則f(x)-2lnx≥0,
設(shè)g(x)=f(x)-2lnx=ax+$\frac{a-2}{x}$+2-2a-2lnx,x∈[1,+∞).
則g(1)=0,g′(x)=$\frac{a(x-1)(x-\frac{2-a}{a})}{{x}^{2}}$,
①當(dāng)0<a<1時(shí),$\frac{2-a}{a}$>1,若1<x<$\frac{2-a}{a}$,則g'(x)<0,
此時(shí)g(x)在[1,+∞)上單調(diào)遞減,所以g(x)<g(1)=0,
即f(x)≥2lnx在[1,+∞)不恒成立.
②若a≥1,$\frac{2-a}{a}$≤1,當(dāng)x>1時(shí),g'(x)>0,g(x)在[1,+∞)上單調(diào)遞增,
又g(1)=0,所以此時(shí)f(x)≥2lnx.
綜上所述,所求a的取值范圍是[1,+∞).
(3)證明:由(2)知當(dāng)a≥1時(shí),f(x)≥2lnx在[1,+∞)上恒成立.
取a=1得x-$\frac{1}{x}$≥2lnx
令x=$\frac{2n+1}{2n-1}$>1,得$\frac{2n+1}{2n-1}$-$\frac{2n-1}{2n+1}$>2ln$\frac{2n+1}{2n-1}$,
即$\frac{1}{2n-1}$-$\frac{1}{2n+1}$>ln$\frac{2n+1}{2n-1}$,
所以$\frac{1}{2n-1}$>$\frac{1}{2}$ln$\frac{2n+1}{2n-1}$+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
上式中n=1,2,3,…,n,然后n個(gè)不等式相加得1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$(2n+1)+$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義,以及利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查學(xué)生的運(yùn)算能力.綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某工廠生產(chǎn)商品M,若每件定價(jià)80元,則每年可銷售80萬件,稅務(wù)部分對市場銷售的商品要征收附加費(fèi),為了既增加國家收入,又有利于市場活躍,必須合理確定征收的稅率,據(jù)市場調(diào)查,若政府對商品M征收的稅率為P%(即每百元征收P元)時(shí),每年的銷售量減少10P萬件,據(jù)此,問:
(1)若稅務(wù)部門對商品M每年所收稅金不少于96萬元,求P的范圍;
(2)在所收稅金不少于96萬元的前提下,要讓廠家獲得最大的銷售金額,應(yīng)如何確定P值;
(3)若僅考慮每年稅收金額最高,又應(yīng)如何確定P值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是秦九韶算法的一個(gè)程序框圖,則輸出的S為( 。
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=sin42°,b=cos46°,c=2${\;}^{-\frac{1}{2}}$,則(  )
A.c<a<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[-π,π]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow a,\overrightarrow b$滿足:$|\overrightarrow a|=13,|\overrightarrow b|=1,|\overrightarrow a-5\overrightarrow b|≤12$,則$\overrightarrow b$在$\overrightarrow a$上的投影長度的取值范圍是( 。
A.$[0,\frac{1}{13}]$B.$[0,\frac{5}{13}]$C.$[\frac{1}{13},1]$D.$[\frac{5}{13},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax2+bx+c(a≠0,a,b,c∈R).
(1)若f(1)=0,且f(x)在x=-1時(shí)有最小值-4,求f(x)的表達(dá)式;
(2)若a=1,且不等式f(c)-f(b)≤t(c2-b2)對任意滿足條件4c≥b2+4的實(shí)數(shù)b,c恒成立,求常數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,S3=7,且a1+3,3a2,a3+4成等差數(shù)列,數(shù)列{bn}滿足關(guān)系式bn(3n-5)=bn-1(3n-2)其中n≥2,n∈N+,且b1=1.
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)設(shè)A={a1,a2,…a10},B={b1,b2,…b50},C=A∪B,求集合C中所有元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)點(diǎn)A、B的坐標(biāo)分別為(-2,0),(2,0),點(diǎn)P是曲線C上任意一點(diǎn),且直線PA與PB的斜率之積為$-\frac{1}{4}$,(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)(m,0)作圓x2+y2=1的切線交曲線C于E、F兩點(diǎn),當(dāng)|m|>1時(shí)求|EF|的最大值.

查看答案和解析>>

同步練習(xí)冊答案