1.在△ABC中,角A,B,C的對邊分別為a,b,c,且a2-(b-c)2=(2-$\sqrt{3}$)bc,sinAsinB=cos2$\frac{C}{2}$,
(1)求角B的大。
(2)若等差數(shù)列{an}的公差不為零,且a1cos2B=1,且a2、a4、a8成等比數(shù)列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n項和Sn

分析 (1)由a2-(b-c)2=(2-$\sqrt{3}$)bc,化簡后利用余弦定理可求cosA,又0<A<π,解得A,由sinAsinB=cos2$\frac{C}{2}$,可得sinB=1+cosC,又C為鈍角,解得cos(C+$\frac{π}{3}$)=-1,從而可求C,進而求得B的值.
  (2)設{an}的公差為d,由已知得a1=2,且(a1+3d)2=(a1+d)(a1+7d).解得d=2.an=2n.由$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.即可用裂項法求和.

解答 解:(1)由a2-(b-c)2=(2-$\sqrt{3}$)bc,可得:a${\;}^{2}-^{2}-{c}^{2}=-\sqrt{3}bc$,
所以cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2}$,又0<A<π,
∴A=$\frac{π}{6}$,
由sinAsinB=cos2$\frac{C}{2}$,可得$\frac{1}{2}$sinB=$\frac{1+cosC}{2}$,sinB=1+cosC,
∴cosC<0,則C為鈍角.B+C=$\frac{5π}{6}$,則sin($\frac{5π}{6}$-C)=1+cosC,
∴cos(C+$\frac{π}{3}$)=-1,
解得C=$\frac{2π}{3}$,∴B=$\frac{π}{6}$.…(6分)
(2)設{an}的公差為d,由已知得a1=$\frac{1}{cosA}=2$,且a24=a2a8
∴(a1+3d)2=(a1+d)(a1+7d).
又d≠0,∴d=2.∴an=2n.…(9分)
∴$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.…(12分)

點評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應用,考查了等差數(shù)列,等比數(shù)列的性質和裂項法求和的方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又在區(qū)間[-2,2]上單調遞增的是( 。
A.f(x)=sinxB.f(x)=ax+a-x(a>0,a≠1)
C.f(x)=ln$\frac{3+x}{3-x}$D.f(x)=ax-a-x,(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.定義在[-1,1]上的奇函數(shù)f(x),已知當x∈[-1,0)時,f(x)=$\frac{1}{4^x}-\frac{a}{2^x}$(a∈R).
(1)討論f(x)在(0,1]上的最大值;
(2)若f(x)是(0,1]上的增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,設直線l:y=xtanα+m,其中m≠0,給出下列結論:
①直線l的方向向量與向量$\overrightarrow a=({cosα,sinα})$共線;
②若$0<α<\frac{π}{4}$,則直線l與直線y=x的夾角為$\frac{π}{4}-α$;
③直線l與直線xsinα-ycosα+n=0(n≠m)一定平行;
寫出所有真命題的序號①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.我校為進行“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S(平方米)的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設矩形AMPN健身場地每平方米的造價為$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價為$\frac{12k}{{\sqrt{S}}}$元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價T關于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價T最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若曲線$\left\{\begin{array}{l}{x=2pt}\\{y=2p{t}^{2}}\end{array}\right.$,(t為參數(shù))上異于原點的不同兩點M1,M2所對應的參數(shù)分別是t1、t2(且t1≠t2),則弦M1M2所在直線的斜率是( 。
A.t1+t2B.t1-t2C.$\frac{1}{{t}_{1+}{t}_{2}}$D.$\frac{1}{{t}_{1-}{t}_{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,則實數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2ax+$\frac{1}{x}$(a∈R).
(1)當$a=\frac{1}{2}$時,試判斷f(x)在(0,1]上的單調性并用定義證明你的結論;
(2)對于任意的x∈(0,1],使得f(x)≥6恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如果定義在R上的函數(shù)f(x)對任意兩個不等的實數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“Z函數(shù)”.給出函數(shù):①y=-x3+1;②y=2x;③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$.以上函數(shù)為“Z函數(shù)”的序號為②④,.

查看答案和解析>>

同步練習冊答案