3.已知圓的-條直徑的兩端點(diǎn)是(2,0),(2,-2).則此圓方程是(x-2)2+(y+1)2=1.

分析 根據(jù)條件求出圓心和半徑即可得到結(jié)論.

解答 解:∵圓的-條直徑的兩端點(diǎn)是(2,0),(2,-2).
∴圓心坐標(biāo)為($\frac{2+2}{2}$,$\frac{0-2}{2}$),即(2,-1),
則半徑r=1,
則圓的方程為(x-2)2+(y+1)2=1,
故答案為:(x-2)2+(y+1)2=1

點(diǎn)評(píng) 本題主要考查圓的方程的求解,根據(jù)中點(diǎn)坐標(biāo)公式求出圓心坐標(biāo)以及半徑是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價(jià)定為80元,該廠為鼓勵(lì)銷售商多訂購(gòu),決定一次訂購(gòu)量超過100張時(shí),每超過一張,這批訂購(gòu)的全部課桌出廠單價(jià)降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過1000張.
(Ⅰ)設(shè)一次訂購(gòu)量為x張,課桌的實(shí)際出廠單價(jià)為P元,求P關(guān)于x的函數(shù)關(guān)系式P(x);
(Ⅱ)當(dāng)一次訂購(gòu)量x為多少時(shí),該家具廠這次銷售課桌所獲得的利潤(rùn)f(x)最大?其最大利潤(rùn)是多少元?(家具廠售出一張課桌的利潤(rùn)=實(shí)際出廠單價(jià)-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了解我市高二年級(jí)進(jìn)行的一次考試中數(shù)學(xué)成績(jī)的分布狀況,有關(guān)部門隨機(jī)抽取了一個(gè)樣本,對(duì)數(shù)學(xué)成績(jī)進(jìn)行分組統(tǒng)計(jì)分析如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖:
分組頻數(shù)頻率
[0,30) 3 0.03
[30,60) 3 0.03
[60,90) 37 0.37
[90,120) m n
[120,150) 15 0.15
合計(jì)MN
(2)若我市參加本次考試的學(xué)生有18000人,試估計(jì)這次測(cè)試中我市學(xué)生成績(jī)?cè)?0分以上的人數(shù);
(3)為了深入分析學(xué)生的成績(jī),有關(guān)部門擬從分?jǐn)?shù)不超過60的學(xué)生中選取2人進(jìn)行進(jìn)一步分析,求被選中2人分?jǐn)?shù)均不超過30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知sinα=$\frac{\sqrt{5}}{5}$,且α是第一象限.
(1)求tan(π+α)+$\frac{sin(\frac{π}{2}-α)}{cos(π-α)}$的值;
(2)求tan(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,2),則|$\overrightarrow{a}$-$\overrightarrow$|的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=cos2(x-$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)的最大值和最小正周期分別為( 。
A.$\frac{1}{2}$,πB.1,πC.$\frac{1}{2}$,$\frac{π}{2}$D.1,$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=lg(mx+$\sqrt{{x}^{2}+1}$)為奇函數(shù),則m=(  )
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果一個(gè)點(diǎn)既在對(duì)數(shù)函數(shù)的圖象上又在指數(shù)函數(shù)的圖象上,那么稱這個(gè)點(diǎn)為“幸運(yùn)點(diǎn)”,在下列的五個(gè)點(diǎn)M(1,1),N(1,2),P(2,1),Q(2,2),G(2,$\frac{1}{2}$)中,“幸運(yùn)點(diǎn)”有多少個(gè)( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品,需要對(duì)原油進(jìn)行冷卻和加熱.如果第xh時(shí),原油的溫度(單位℃)為y=f(x)=x2-7x+15(0≤x≤8),則第4h時(shí)原油溫度的瞬時(shí)變化率是1℃/h;在第4h時(shí)附近,原油的溫度在上升.(此空填上升或下降)

查看答案和解析>>

同步練習(xí)冊(cè)答案