6.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{|l{g}{(x-1)}|,x>1}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)=0有4個(gè)不同的實(shí)根,則實(shí)數(shù)b的取值范圍為( 。
A.(2,+∞)B.(0,2]C.[-2,0)D.(-∞,-2)

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{|l{g}{(x-1)}|,x>1}\end{array}\right.$的圖象,由f2(x)+bf(x)=0得f(x)=0或f(x)=-b,從而解得.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{|l{g}{(x-1)}|,x>1}\end{array}\right.$的圖象如下,
,
∵f2(x)+bf(x)=0,
∴f(x)=0或f(x)=-b,
結(jié)合圖象可知,
方程f(x)=0有且僅有一個(gè)根x=2,
故方程f(x)=-b有3個(gè)不同的根,
故0<-b≤2,
故-2≤b<0,
故選C.

點(diǎn)評 本題考查了函數(shù)的圖象的作法及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)是定義在R上的奇函數(shù),在(0,+∞)上是增函數(shù),且f(2)=0,則使得f(x)<0的x的取值范圍是(0,2)∪(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2asin2x+2sinxcosx-a的圖象關(guān)于直線x=$\frac{5π}{12}$對稱.
(1)求常數(shù)a;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.討論函數(shù)y=x${\;}^{\frac{2}{5}}$的定義域、值域、奇偶性、單調(diào)性,并畫出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由正數(shù)組成的等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,且$\frac{{a}_{n}}{_{n}}$=$\frac{2n-1}{3n-1}$,則$\frac{{S}_{5}}{{T}_{5}}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若數(shù)列{bn}的前n項(xiàng)和為Tn=2n+1,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,湖岸AE可近似地看成直線,營救人員在A處發(fā)現(xiàn)湖中B處有人落水后立即進(jìn)行營救.己知B到AE的距離為20米,∠BAE=50°.營救人員在岸上的行進(jìn)速度為7米/秒,在湖中受水流等影響后的實(shí)際行進(jìn)速度為1米/秒,落水人以$\frac{1}{5}$米/秒的速度沿$\overrightarrow{AE}$方向漂流.記營救人員從發(fā)現(xiàn)有人落水到接觸到落水人的時(shí)間為t.
(1)如圖2,若營救人員直接從A處入水救人,求出t的值.
(2)如圖3,營救人員要用最少的時(shí)間救人,沿岸邊從A跑到C處再入水救人,在湖中行進(jìn)速度與$\overrightarrow{AE}$的夾角為α,試用α表示時(shí)間r,并求出t的最小值(結(jié)果保留根號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓的方程為x2+(y-1)2=4,若過點(diǎn)P(1,$\frac{1}{2}$)的直線l與圓交于A、B兩點(diǎn),圓心為C,則圓∠ACB最小時(shí),直線l的方程為4x-2y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的定義域:
(1)y=$\frac{x-1}{\sqrt{-{x}^{2}+x+2}}$;
(2)y=$\frac{1}{|x-1|}$.

查看答案和解析>>

同步練習(xí)冊答案