分析 (1)根據(jù)定義構(gòu)造方程,再判斷方程是否有解,問題得以解決.
(2)根據(jù)定義構(gòu)造方程4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,再利用換元法,設(shè)t=2x+2-x,方程變形為t2-2mt+2m2-8=0 在區(qū)間[2,+∞)內(nèi)有解,再根據(jù)判別式求出m的范圍即可
解答 解:(1)證明:由f(x)=ax3+bx2+cx-b得f(-x)=-ax3+bx2-cx-b,
代入f(-x)=-f(x) 得ax3+bx2+cx-b-ax3+bx2-cx-b=0得到關(guān)于x的方程2bx2-2b=0,b≠0時,x=±1
當(dāng)b=0,x∈R等式恒成立,
所以函數(shù)f(x)=ax3+bx2+cx-b必有局部對稱點;
(2)∵f(x)=4x-m2x+1+m2-3
∴f(-x)=4-x-m•2-x+1+m2-3,
由f(-x)=-f(x),∴4-x-m•2-x+1+m2-3=-(4x-m•2x+1+m2-3),
于是 4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,
令t=2x+2-x(t≥2),則4x+4-x=t2-2,
∴方程(*)變?yōu)閠2-2mt+2m2-8=0 在區(qū)間[2,+∞)內(nèi)有解,需滿足條件:
$\left\{\begin{array}{l}△=4{m}^{2}-8({m}^{2}-4)≥0\\ \frac{2m+\sqrt{4(8-{m}^{2})}}{2}≥2\end{array}\right.$,解得$\left\{\begin{array}{l}-2\sqrt{2}≤m≤2\sqrt{2}\\ 1-\sqrt{3}≤m≤2\sqrt{2}\end{array}\right.$,
化簡得$1-\sqrt{3}$≤m≤2$\sqrt{2}$.
點評 本題依據(jù)新定義,考查了方程的解得問題以及參數(shù)的取值范圍,以及換元的思想,轉(zhuǎn)化思想,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com