15.定義行列式運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3.若將函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$的圖象向左平移m(m>0)個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則m的最小值是( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5}{6}$πD.$\frac{π}{3}$

分析 由已知利用二階行列式的展開式法則及函數(shù)平移的性質(zhì)得到y(tǒng)=2sin(x+m-$\frac{π}{3}$)是奇函數(shù),從而m-$\frac{π}{3}$=kπ,k∈Z,由此能求出m的最小值.

解答 解:∵函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$),
函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$的圖象向左平移m(m>0)個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),
∴y=2sin(x+m-$\frac{π}{3}$)是奇函數(shù),∴m-$\frac{π}{3}$=kπ,k∈Z,
∵m>0,∴m的最小值是$\frac{π}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二階行列式的展開式法則及函數(shù)平移的性質(zhì)及三角函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)是偶函數(shù),在(0,+∞)上單調(diào)遞增,則下列不等式成立的是( 。
A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則$\frac{λ}{μ}$的值為(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{6cos(π+x)+5si{n}^{2}(π-x)-4}{cos(2π-x)}$,且f(m)=2,試求f(-m)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx+$\frac{a}{ex}$,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=a|2x-1|-|x+2|.
(1)若a=1,求不等式(x)>x-1的解集;
(2)若函數(shù)f(x)在x=-2處存在唯一的最大值,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)},仍是等比數(shù)列,則稱f(x)為“等比函數(shù)”.現(xiàn)有定義在(-∞),0)∪(0,+∞)上的如下函數(shù):
①f(x)=3x,
②f(x)=$\frac{2}{x}$,
③f(x)=x3
④f(x)=log2|x|,
則其中是“等比函數(shù)”的f(x)的序號(hào)為( 。
A.①②③④B.①④C.①②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.求值$\frac{2cos40°+sin10°}{cos10°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知{an}是等差數(shù)列,其公差d<0,其前n項(xiàng)和記為Sn,且S16>0,S17<0,則當(dāng)Sn取最大值時(shí)的n=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案