分析 要把橫線處補(bǔ)全,就要把$b=\sqrt{6}$作為已知條件求A和C的值,由a,B和b的值,根據(jù)正弦定理求出A,再由三角形的內(nèi)角和定理求出C的度數(shù)即可得解.
解答 解:∵$a=\sqrt{3}$,$B=\frac{π}{4}$,$b=\sqrt{6}$.
∴由正弦定理可得:sinA=$\frac{asinB}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∵$\sqrt{3}<\sqrt{6}$,A<B,
∴解得:A=$\frac{π}{6}$,C=π-A-B=$\frac{7π}{12}$.
∵破損處的條件為三角形的一個內(nèi)角的大小,故橫線上的條件為:$A=\frac{π}{6}$(或$C=\frac{7π}{12}$).
故答案為:$A=\frac{π}{6}$(或$C=\frac{7π}{12}$).
點(diǎn)評 此題考查學(xué)生靈活運(yùn)用正弦定理化簡求值,靈活運(yùn)用三角形內(nèi)角和定理化簡求值,把b的值看做已知條件求A或C的s值是解本題的基本思路,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年限x(年) | 2 | 3 | 4 | 5 | 6 |
保養(yǎng)和維修費(fèi)用y(萬元) | 3 | 3.5 | 5 | 6.5 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>-$\frac{1}{2}$ | B. | a<-$\frac{1}{2}$ | C. | a≥-$\frac{1}{2}$ | D. | a≤-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,1)∪(1,+∞) | C. | (-∞,0) | D. | (-∞,-1)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com