分析 (1)取AD的中點(diǎn)F,連EF,F(xiàn)O,根據(jù)定義可知∠EOF是二面角E-AC-D的平面角,在△EOF中求出此角.
(2)利用(1),說(shuō)明EC與平面PBC所成角就是∠PAG-∠ECF(二面角與直線與平面所成角的差),然后利用解三角形求解即可.
解答 解:(1)連BD交AC于點(diǎn)O,連EO,
則EO是△PDB的中位線,
取AD的中點(diǎn)F,連EF,F(xiàn)O,
則EF是△PAD的中位線,
∴EF∥PA又PA⊥平面ABCD,
∴EF⊥平面ABCD
同理FO是△ADC的中位線,
∴FO∥AB,F(xiàn)O⊥AC由三垂線定理可知∠EOF是二面角E-AC-D的平面角.
又FO=$\frac{1}{2}$AB=$\frac{1}{2}$PA=EF
∴∠EOF=45°,故所求二面角E-AC-D的大小為45°.
(2)在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且AB=AC=$\frac{1}{2}$PA=1,點(diǎn)E是PD的中點(diǎn).
EF⊥平面ABCD,G為BC的中點(diǎn),AG⊥BC,平面EFC∥平面PAG,并且BC⊥平面PAG,EC與平面PBC所成角為θ,就是θ=∠PAG-∠ECF,AB=AC=$\frac{1}{2}$PA=1,可得AG=FC=$\frac{\sqrt{2}}{2}$,PA=2,EF=1,EC=$\sqrt{1+\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$,PG=$\sqrt{4+\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,
∴cosθ=$\frac{({\frac{\sqrt{6}}{2})}^{2}+(\frac{3\sqrt{2}}{2})^{2}-{1}^{2}}{2×\frac{\sqrt{6}}{2}×\frac{3\sqrt{2}}{2}}$=$\frac{5}{3\sqrt{3}}$.
EC與平面PBC所成角的正弦值:sinθ=$\sqrt{1-{cos}^{2}θ}$=$\frac{\sqrt{6}}{9}$.
點(diǎn)評(píng) 本題主要考查了直線與平面平行的判定,以及二面角等有關(guān)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2sin(2x-$\frac{π}{4}$) | B. | y=2sin(2x-$\frac{π}{4}$)或y=2sin(2x+$\frac{3π}{4}$) | ||
C. | y=2sin(2x+$\frac{3π}{4}$) | D. | y=2sin(2x-$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{7π}{6}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com