6.設(shè)集合S含有n個元素,A1,A2,…,Ak是S的不同子集,它們兩兩的交集非空,而S的其他子集不能與A1,A2,…,Ak都相交,求證:k=2n-1

分析 把2n個子集按互補(bǔ)關(guān)系配成2n-1對.只需證明下兩步.先證明每對不能同時取,再證明每對不能都不。

解答 證明:把2n個子集按互補(bǔ)關(guān)系配成2n-1對.只需證明下兩步.
先證明每對不能同時。ǚ駝t它們的交為空,矛盾).
再證明每對不能都不取,否則設(shè)A、B互補(bǔ)且都沒取,那么A為什么不被取呢,因?yàn)橐讶〉募现杏信cA不交的C,C一定是B的子集;B為什么不被取呢,因?yàn)橐讶〉募现杏信cB不交的D,D一定是A的子集.但是C、D本身就是不交的,卻都被取了,豈不矛盾.
綜上所述,k=2n-1

點(diǎn)評 本題考查集合的關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若a,b,p(a≠0,b≠0,p>0)分別表示同一直線的橫截距、縱截距及原點(diǎn)到直線的距離,則下列關(guān)系式成立的是( 。
A.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$=$\frac{1}{{p}^{2}}$B.$\frac{1}{{a}^{2}}$-$\frac{1}{^{2}}$=$\frac{1}{{p}^{2}}$C.$\frac{1}{{a}^{2}}$+$\frac{1}{{p}^{2}}$=$\frac{1}{^{2}}$D.$\frac{1}{{a}^{2}{p}^{2}}$=$\frac{1}{^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的面積S和三邊a,b,c滿足:S=a2-(b-c)2,b+c=6,則△ABC的面積S的最大值為$\frac{36}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,求f(3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合M是實(shí)數(shù)集R的一個子集,如果點(diǎn)x0∈R滿足:對任意?>0,都存在x∈M,使得0<|x-x0|<?,稱x0為集合M的一個“聚點(diǎn)”.若由集合:
①有理數(shù)集;
②無理數(shù)集;
③{sin$\frac{π}{n+1}$|n∈N*};
④{$\frac{n}{n+1}$|n∈N*}
其中以0為“聚點(diǎn)”的集合是①②③.(寫出所有符合題意的結(jié)論序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=loga(6-ax)在(0,2)上為減函數(shù),則a的取值范圍是(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線bx+ay+2=0與曲線y=x3-1在點(diǎn)P(1,0)處的切線平行,則$\frac{a}$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),且($\overrightarrow$-λ$\overrightarrow{a}$)⊥$\overrightarrow{a}$,則實(shí)數(shù)λ的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x+2|-|x-1|.
(1)求不等式f(x)>1解集;
(2)若關(guān)于x的不等式f(x)+4≥|1-2m|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案