5.設(shè)有直線M、n和平面α、β.則下列結(jié)論中正確的是( 。
①若M∥n,n⊥β,M?α,則α⊥β;
②若M⊥n,α∩β=M,n?α,則α⊥β;
③若M⊥α,n⊥β,M⊥n,則α⊥β.
A.①②B.①③C.②③D.①②③

分析 由面面垂直的判定定理得①③正確,在②中,α與β相交或平行.

解答 解:由M、n是直線,α、β是平面,知:
①若M∥n,n⊥β,M?α,則由面面垂直的判定定理得α⊥β,故①正確;
②若M⊥n,α∩β=M,n?α,則α與β相交或平行,故②錯(cuò)誤;
③若M⊥α,n⊥β,M⊥n,則由面面垂直的判定定理得α⊥β,故③正確.
故選:B.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知曲線C上的點(diǎn)到定點(diǎn)F(0,$\frac{P}{2}$)(p>0)與到定直線y=-$\frac{P}{2}$的距離相等,A是曲線C上第一象限內(nèi)的點(diǎn),在點(diǎn)A處的切線l1與x、y軸分別交于D、Q兩點(diǎn),且|FD|=2,∠AFD=60°.
(1)求曲線C的方程;
(2)求∠FAD的角平分線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知(1,2)是直線l被橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1所截得的線段的中點(diǎn),則l的方程是3x+2y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a,b∈R+,函數(shù)f(x)=|x+a|-|2x+$\frac{2}$|.
(1)求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)的最大值為5,求$\frac{1}{a}$+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.圓x2+y2-4x-5=0的點(diǎn)到直線3x-4y+20=0的距離的最大值為$\frac{41}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖四棱錐P-ABCD中,PB=PC,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=$\sqrt{3}$.
(1)求證:AB∥平面PCD;
(2)求證:PA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在△ABC中,點(diǎn)A,C在x軸上,AB=4,∠BAC=30°,求向量$\overrightarrow{AB}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知a是實(shí)數(shù),函數(shù)f(x)=ax+lnx,g(x)=ex,其中e是自然對(duì)數(shù)的底數(shù).
(1)設(shè)a≤0時(shí),求f(x)的單調(diào)區(qū)間;
(2)設(shè)a=0時(shí),試比較g(x)與f(x)+2的大小,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,其中a=1,A+C=2B,△ABC的面積為S=$\frac{3\sqrt{3}}{4}$.
(1)求b的長(zhǎng);
(2)求sinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案