12.求函數(shù)y=$\frac{1}{2}$x2-x+1在a≤x≤b上的最大值.

分析 根據(jù)區(qū)間與對(duì)稱軸的關(guān)系討論函數(shù)的單調(diào)性,利用單調(diào)性求出最值.

解答 解:二次函數(shù)的圖象開口向上,對(duì)稱軸為x=1.
若1≤$\frac{a+b}{2}$,即a+b≥2時(shí),二次函數(shù)的最大值為$\frac{1}{2}$b2-b+1.
若1>$\frac{a+b}{2}$,即a+b<2時(shí),二次函數(shù)的最大值為$\frac{1}{2}$a2-a+1.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右焦點(diǎn)F2的直線y=$\sqrt{3}$(x-c)與雙曲線在第一象限交于點(diǎn)A,點(diǎn)F1為左焦點(diǎn),且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,則此雙曲線的離心率為( 。
A.$\frac{1+\sqrt{3}}{2}$B.$\frac{1+\sqrt{5}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.參數(shù)a分別取何值時(shí),關(guān)于x的方程$\frac{lo{g}_{a}x}{lo{g}_{a}2}$+$\frac{lo{g}_{x}(2a-x)}{lo{g}_{x}2}$=$\frac{1}{lo{g}_{({a}^{2}-1)}2}$,
(1)有解;
(2)僅有一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.根據(jù)下列條件,求雙曲線方程:
(1)中心在原點(diǎn),一個(gè)頂點(diǎn)是(0,6),且離心率是1.5;
(2)已知雙曲線經(jīng)過點(diǎn)P(10,-3$\sqrt{3}$),且漸近線為y=±$\frac{3}{5}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.平面上$\overrightarrow{a}$,$\overrightarrow$滿足|2$\overrightarrow{a}$+$\overrightarrow$|=1,|$\overrightarrow{a}-3\overrightarrow$|=1,則|$\overrightarrow{a}$|的范圍是[$\frac{2}{7}$,$\frac{4}{7}$],則|$\overrightarrow$|的范圍是[$\frac{1}{7}$,$\frac{3}{7}$],|$\overrightarrow{a}+\overrightarrow$|的取值范圍是[$\frac{3}{7}$,$\frac{5}{7}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{[sin(\frac{π}{2}-x)tan(π+x)-cos(π-x)]^{2}-1}{4sin(\frac{3π}{2}+x)+cos(π-x)+cos(2π-x)}$.
(1)化簡(jiǎn)f(x);
(2)若-$\frac{π}{3}$<x<$\frac{π}{3}$且f(x)<$\frac{1}{4}$,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,“a1<a3”是“數(shù)列{an}是單調(diào)遞增數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-4x+3.
(1)求f[f(-1)]的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算下列各式的值:
(1)$\frac{lg12}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;
(2)($\frac{25}{9}$)0.5+0.1-2+($\sqrt{8}$)${\;}^{{\;}^{\frac{2}{3}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案