13.若點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線y=x-4的最小距離為2$\sqrt{2}$.

分析 由題意知,當(dāng)曲線上過點(diǎn)P的切線和直線y=x-4平行時,點(diǎn)P到直線y=x-4的距離最小.求出曲線對應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于1,可得切點(diǎn)的坐標(biāo),此切點(diǎn)到直線y=x-4的距離即為所求.

解答 解:點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),
當(dāng)過點(diǎn)P的切線和直線y=x-4平行時,
點(diǎn)P到直線y=x-4的距離最。
直線y=x-4的斜率等于1,
y=x2-lnx的導(dǎo)數(shù)y′=2x-$\frac{1}{x}$
令y′=1,解得x=1,或 x=-$\frac{1}{2}$(舍去),
故曲線y=x2-lnx上和直線y=x-4平行的切線經(jīng)過的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線y=x-4的距離d=,
故點(diǎn)P到直線y=x-4的最小距離為d=$\frac{|1-1-4|}{\sqrt{{1}^{2}+{1}^{2}}}$=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,同時考查點(diǎn)到直線的距離公式的應(yīng)用,求出函數(shù)的導(dǎo)數(shù)及運(yùn)用兩直線平行的條件是解題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=2sinxcosx+cos2x-sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大最小值以及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四面體ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E,F(xiàn)分別為棱BC和AD的中點(diǎn).
(1)求證:AE⊥平面BCD;
(2)求證:AD⊥BC;
(3)若△ABC內(nèi)的點(diǎn)G滿足FG∥平面BCD,設(shè)點(diǎn)G構(gòu)成集合T,試描述點(diǎn)集 的位置(不必說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知矩形ABCD的長和寬分別是4,3,AE⊥BD,CF⊥BD,沿對角線BD把△BCD折起,使二面角C-BD-A的大小為60°,則線段AC的長為$\frac{\sqrt{193}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若直線y=kx是曲線y=x3-x2+x的切線,則k的值為1或$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2(a+1)x+2alnx.
(1)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>1時,求f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.經(jīng)過點(diǎn)P(2,4)且與曲線y=$\frac{1}{3}$x3+$\frac{4}{3}$相切的直線方程為(  )
A.y=x+2B.y=4x-4C.y=x+2或y=4x-4D.y=-x+2或y=-4x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知lg2=0.3010,則101.3010=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知(x+$\frac{1}{x}$-2)9,展開式x3的系數(shù)為18564.

查看答案和解析>>

同步練習(xí)冊答案