3.函數(shù)$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$,給出下列結(jié)論:
①f(x)的最小正周期為π
②f(x)的一條對稱軸為x=$\frac{π}{6}$
③f(x)的一個對稱中心為$(\frac{π}{6},0)$
④$f(x-\frac{π}{6})$是奇函數(shù)
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

分析 函數(shù)$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$=$\frac{1}{2}sin(2x+\frac{π}{3})$,逐一分析四個結(jié)論的真假,可得答案.

解答 解:∵函數(shù)$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$=$\frac{1}{2}sin(2x+\frac{π}{3})$,
∵ω=2,故f(x)的最小正周期為π,故①正確;
當x=$\frac{π}{6}$時,f(x)取最大值,故f(x)的一條對稱軸為x=$\frac{π}{6}$,故②正確,③錯誤;
$f(x-\frac{π}{6})$=$\frac{1}{2}sin2x$,函數(shù)圖象關(guān)于原點對稱,是奇函數(shù),故④正確,
故正確的結(jié)論有3個,故選:C.

點評 本題考查的知識點是三角函數(shù)的周期性,對稱性,奇偶性,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)y=$\frac{ax+3}{x-2}$在區(qū)間(2,+∞)上單調(diào)遞增,則a的取值范圍是a<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列結(jié)論:
①若命題p:存在x∈R,tan x=2;命題q:任意x∈R,x2-x+$\frac{1}{2}$>0.則命題“p且(非q)”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3;
③設(shè)F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為$\sqrt{3}$.
④設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當$\frac{xy}{z}$取得最大值時,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值為1.
其中正確結(jié)論的序號為①③④.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合$A=\left\{{\left.x\right|x=\frac{k}{2},k∈Z}\right\},B=\left\{{\left.x\right|x=\frac{k}{4},k∈Z}\right\}$,則( 。
A.A⊆BB.B⊆A
C.A=BD.A與B的關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)當c=1時,求y=f(x)在點(0,f(0))處的切線方程;
(2)若當x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知集合A={x|x2-x-2>0},函數(shù)g(x)=$\sqrt{3-|x|}$的定義域為集合B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且C⊆A,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=sin2x+cos2x在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.(理)64個正數(shù)排成8行8列,如圖所示:在符號aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行都成等差數(shù)列,而每一列都成等比數(shù)列(且每列公比都相等).若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$.則a81a82…a88…aij=j($\frac{1}{2}$)i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若動點P(x,y)在$\frac{x^2}{4}+\frac{y^2}{9}=1$曲線上變化,則x2+2y的最大值為( 。
A.$\frac{25}{4}$B.$\frac{27}{4}$C.6D.8

查看答案和解析>>

同步練習冊答案